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Abstract
Embedded soft sensors can significantly impact the design and control of soft-bodied robots. Al-

though, there have been considerable advances in technology behind these novel sensing materials, their
application in real-world tasks, especially in closed-loop control tasks have been severely limited. This
is mainly because of the challenge involved with modelling a nonlinear time-variant sensor embedded
in a complex soft-bodied system. This paper presents a learning-based approach for closed-loop force
control with embedded soft sensors and recurrent neural networks. We present learning protocols for
training a class of recurrent neural networks called long-short term memory (LSTMs) that allows us
to develop accurate and robust state estimation models of these complex dynamical systems within a
short period of time. Using this model, we develop a simple feedback force controller for a soft an-
thropomorphic finger even with significant drift and hysteresis in our feedback signal. Simulation and
experimental studies are conducted to analyze the capabilities and generalizability of the control archi-
tecture. Experimentally, we are able to develop a closed-loop controller with a control frequency of
25Hz and an average accuracy of 0.17 N. Our results indicate that current soft sensing technologies
can already be employed in real-world applications with the aid of machine learning techniques and an
appropriate training methodology.
Keywords: Soft Sensors, Closed-loop Control, Machine Learning, Force Control, Recurrent Neural
Networks

1. Introduction
Soft robots and their derived technologies pro-

vide a new paradigm for developing intelligent,
safe and robust robotic systems.1, 2 Amongst
them, soft robots with embedded soft sensors are
important for proprioception, exteroception and
for developing feedback controllers.3 Although
the area of soft robotic sensors has seen signifi-
cant developments in the recent years, the usage of
these technologies in real-world applications have
been limited.4 The key reason for this is the dif-
ficulty in modelling these nonlinear time-variant
dynamic systems, which is further complicated
by the uncertainties introduced by the fabrication
process.5 For feedback control applications, fast,
accurate, and robust models of these sensors are
required, which is addressed in this work.

Typically, feedback control of soft robotic sys-
tems is performed using external sensory sys-
tems.6 This removes/reduces the need for mod-
elling the sensory system itself and focuses only
on the dynamics of the actuator-body system.
Recently, both model-based7 and model-free8, 9

approaches have shown promise in solving the
closed-loop dynamic control problem. However,
these systems are limited in the type of control
task they can perform due to their limited sens-
ing capabilities. Internal body states like stress are
not measurable using the current external sensing
technologies like optical tracking. Moreover, they
are adversely affected by occlusion problems, es-
pecially in tasks involving contact. Hence, em-
bedded sensing technologies are important for
tasks involving force control and dexterous ma-
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nipulation.

Embedded sensing using soft robotic sensors
have immense potential to advance tactile sens-
ing abilities in robotic systems.4, 5 Due to their
high compliance and omni-directional response
they can be easily combined to measure contact,
deformation, pressure and stress. These sensors
are made with materials that provide an electri-
cal stimulus in response to a mechanical input.
Resistive and piezoresistive sensors change their
electrical conductivity in response to mechanical
stimulus. They can be developed with conduc-
tive liquids,10 elastomeric composites with con-
ductive fillers,11, 12 conductive yarn,13 etc. Other
modes of sensing technologies like capacitive14, 15

and optical sensing16, 17 have been widely studied
too. This work uses the commonly used resistive-
type strain sensors.

Once the sensors are embedded in the system,
the next problem is to estimate the states of the
robot from the sensor signals. The complexity of
the state estimation problem is not only depen-
dent on the electro-mechanical properties of the
sensor material itself but also on the structure of
the sensor and its dynamic interaction with the
embedding matrix. For linear time-invariant sen-
sors simple analytical models are sufficient, es-
pecially when characterizing the sensor by itself.
Learning based approaches are typically used for
modelling these sensors once they are embedded
in a surrounding matrix irrespective of their sens-
ing mechanism. They have been used for human
body tracking,18–22 proprioception,23–26 grasp pre-
diction,27 tactile sensing,28–30 etc. Nonetheless,
the most convincing example of applicability and
robustness of these architectures comes through a
closed-loop control task. Here, we need accurate
and fast sensing methods that are robust over a
wide range of motion bandwidth and interactions.

To close the control loop with these embed-
ded soft sensors it is necessary to have a model
that maps from the control inputs and the con-
trollable state of the robot on top of the state-
estimation model. The state-of-the-art in closed-
loop control of soft robots rely on collocated
sensor-actuator structures to simplify this prob-
lem.31 Collocated architectures rely on aligned
sensor-actuator pairs.32, 33 This leads to a mono-
tonic relationship between the sensor signal and

the control variable which allows us to control the
system with simple PID controller.34–36 However,
such designs are highly restrictive on the design
space of the soft robotic system and difficult to
implement for passive and underactuated systems.
Additionally, if there are time variant nonlineari-
ties present in the system, such control architec-
tures would not work.

This paper presents a closed-loop control ar-
chitecture for a passive underactuated anthropo-
morphic arm with nonlinear time variant embed-
ded soft sensors. Due to the complexity of the de-
sign, the arrangement of the sensors and the tem-
poral nonlinearities in the sensor, we develop a
learning based control architecture that provides
robust and accurate state estimation. With the
learned model, we create a simple feedback con-
troller for closed-loop force control at 25Hz. Our
work is the first demonstration of a closed-loop
controller for a general soft robotic system with
no assumptions on the location and linearity of the
embedded soft sensors.

2. Materials and Methods

2.1. Experimental Setup

The experiments are conducted on a passive
anthropomorphic finger with rigid skeleton, flex-
ible ligaments, and a soft skin. More details on
the fabrication of the finger can be found in the
author’s previous work.37 The skeleton of the
finger is 3D printed and attached with compli-
ant joints. The skeleton is then spin coated with
a layer of Ecoflex-10. The strain sensors strands
are then placed in U-shapes on the skin with vary-
ing lengths. We use a resisitive soft strain sen-
sor called Conductive Thermoplastic Elastomer
(CTPE) for the state feedback.38 They are a com-
posite of a thermoplastic elastic matrix and car-
bon black powder made under high pressure and
temperature. The passive finger is mounted on a
UR5 industrial manipulator which is constrained
to move only in the Z-direction (See Figure 1).
A force sensitive resistor (FSR) is fixed in the
XY plane for obtaining ground truth force data
for training the soft sensors. The finger comes in
contact with the FSR through a rigid plate which
is placed on the FSR. The raw signals from the
soft sensors and the FSR is read using a 16-bit
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NI USB-6212 data acquisition system after go-
ing through a voltage divider. The data from
the analog channels are read through USB by
the MATLAB programming environment and the
UR5 robot is controlled through a TCP/IP connec-
tion. Internally, the UR5 robot is controlled by an
end-effector trajectory following command called
servoj.39 The servoj command is designed to exe-
cute smooth trajectories in the joint space by hav-
ing a look ahead horizon. For our case, as we have
a reactive controller, this look head horizon is re-
stricted to a short period of two times the control
frequency. A blocking time of 0.039 seconds is
manually selected to make sure that the arm never
comes to a complete rest while not lagging the
commanded trajectory.

The response of one of the embedded soft sen-
sor to random motions in the allowed direction is
shown in Figure 2, as a scatter plot. There are
two key points to be observed here. First, as the
system has a non-collocated architecture, it is not
necessary to have a monotonic relation between
the sensor and the control variable, which in our
case is the force in the Z-direction. Second, the
sensor has significant temporal nonlinearities like
drift and hysteresis. This makes the problem of
estimating the actual force from the sensor state
difficult. To address the first issue, we are using
multiple sensors for estimation the system state.
For handling temporal nonlinearites, we employ
recurrent neural networks that utilize information
from past data points for prediction.

[Figure 1 about here.]

[Figure 2 about here.]

2.2. Sensor Modelling
For modelling the relation between sensor re-

sponses and the applied tip force by the finger we
use Long Short-Term Memory (LSTM) recurrent
neural networks.40 LSTMs are a type of recurrent
neural networks(RNN) that have been developed
to deal with the vanishing gradient problem typi-
cally found in training traditional RNNs.41

Even though LSTM networks can be used to
learn the temporal relation in the sensor data there
is still a problem in the initialization of the net-
work. Consider, the case of drift in the sensor

data. Even if the sensors exhibit a predictable drift
pattern, once the robotic device is turned-off, the
current drift-state is lost. Hence, a LSTM network
trained for a specific initial condition will perform
poorly upon repeated experimentation. One way
to solve this problem is to wait for a long period
between each trial. However, this is limiting in the
applicability of the device, and it is not necessary
that all the sensors return to their initial state after
the resting period.

To solve this problem. we employ a stateful
LSTM network for the prediction problem along
with a batch sampling process that trains the net-
work on various initial conditions.42 A stateful
LSTM updates their internal state with every data
in the input sequence. The training is obtained
as 20 batches of sequence data that are obtained
at varying sensor states. This is done by random
motion of the finger in the Z direction for around
400 seconds for each batch. Successive batches
are obtained by repeating the process after a wait
time of 300 seconds. No data is obtained during
the wait period. The whole data collection hence
requires only 4 hours. The sensor data from all
the six sensor and the ground truth sensor is then
resampled to 25Hz for training providing around
400000 data points. The whole data is then nor-
malized by the mean and standard deviation of the
combined batch data (The same mean and stan-
dard deviation values throughout the remaining
tests). Two of the batches are used for validation
during training and the rest for training. An exam-
ple of the raw sensor data for one of the soft sensor
is shown in Figure 3a. Note that the initial value
of the sensor varies even though the ground truth
force value is the same (The finger starts from no-
contact configuration). The validation batches are
taken near beginning and end of sampling to en-
sure that the model is not over-fitting (Figure 3a).

We use a single LSTM layer with 50 hidden
units for learning the mapping between the 6 soft
sensor data and the actual Z-axis force. A dropout
layer is not used due to the relatively small size of
the LSTM network with respect to the number of
training data. A mini-batch size of 5 is used for
updating the weights of the network after each it-
eration. The MATLAB toolbox for deep learning
is used for creating and training the LSTM net-
work. The Adam (adaptive moment estimation)
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optimizer is used for updating the weights of the
network. The root mean squared error (RMSE)
for the training and validation data is shown in
Figure 3b. As the validation set is obtained in-
dependently from the training data, the reduc-
tion in validation RMSE with training RMSE is
a strong indicator that there is no overfitting of
the data. The performance of the LSTM network
after training can be seen through the predictions
on the validation set, as shown in Figure 3d. The
learned model is not only accurate and robust to
the nonlinearities present in the sensors but also
robust to the noise present in our ground truth
data. The role of the redundant sensor data can
be inferred by selectively adding noise to the sen-
sor data on the validation set. The effect of adding
a zero mean normally distributed noise with 0.02
standard deviation to each sensor data is shown in
Figure 3c. Although some of the sensors are more
important for prediction, all the sensors have some
contribution to the final estimation.

[Figure 3 about here.]

2.3. Control Architecture
Although the relationship between the sen-

sor signals and applied force is highly nonlinear
and time variant, the mapping between the ap-
plied force and displacement of the base manip-
ulator can be assumed to be monotonic. This al-
lows to close the loop with a proportional feed-
back over the estimated and desired force values
(Figure 4). With a model of the relation between
displacement and applied force values, more ac-
curate tracking can be obtained. The controller is
run at 25Hz, the same frequency as the learned
model. The proportional gain is tuned manually.
Due to the noise in the data, a derivative compo-
nent is not added alongside the proportional com-
ponent for the experimental studies. We perform
simulation studies to investigate the advantages of
a Proportional Derivative controller over a Propor-
tional controller.

At the start of each test, the states of LSTM
network are reset to its initial value. Note that due
to our learning strategy, the LSTM network can
be reset at any point, and we can expect the model
predictions to be accurate after the initial few data
points are fed to the system. At every control cy-

cle the raw sensor from the six sensors are mea-
sured, resampled to the desired control frequency
by linear interpolation, normalized, and fed to the
LSTM network. The LSTM network provides the
estimate of applied tip force and updates its in-
ternal states. Hence, every next prediction can be
performed with only the recent sensor data. How-
ever, extra care must be taken to avoid providing
noisy data to the network to ensure that the net-
work states do not diverge to inaccurate values.
As the training of the network is done such that
the network is not dependent on the initial sensor
state, the LSTM network can be reset to ensure
accurate predictions.

[Figure 4 about here.]

3. Simulation Study
To test the generalizability of the approach

and the limits of the controller we perform con-
trol studies on a simulated anthropomorphic finger
developed in MATLAB Simscape(Figure 5a). Un-
like the real setup, the simulated finger has fixed
degrees of freedom with three compliant revo-
lute joints. The sensors are simulated as a func-
tion that transforms all the three joint angle in-
formation into a single value with added nonlin-
ear drift and noise. The drift is modelled using
an ideal memristor with a nonlinear dopant drift
approach. Eight such sensors are simulated with
random noise and parameters for the memristor.
The finger is constrained to move only in the Z di-
rection, with a limit on the maximum acceleration
based on real UR5 arm. The training protocol is
kept the same for comparison purposes. The con-
troller is also run at 25 Hz.

Figure 5b shows the effect of adding a deriva-
tive component to the feedback controller for both
the learned state-estimation model and the ideal
state feedback. As expected, with real feedback
from the ground truth sensor, the feedback con-
troller performs the best with little overshoot and
faster convergence. Adding the derivative compo-
nent improves the overall performance. Due to the
added delay with the state-estimation model, the
feedback control has a much higher overshoot for
the same control parameters. Adding the deriva-
tive component does not improve the performance
because of the added delay and noise in the sen-
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sor. Adding an integral term is not necessary here
because of the low steady state error.

Figure 5c shows the long term performance
of the controller and scenarios when the state-
estimation model starts to deviate from the ground
truth. For fixed-period force tracking experiments
we do not see any performance degradation over
time even after using the controller for periods
longer than the training batch size. The prediction
errors however deteriorate when the frequency of
the tracked force profile increases. This is most
likely because the training data, even though it is
random, does not contain high frequency compo-
nents. This is unavoidable as high frequency mo-
tions can cause damage to the system and has to
be avoided in any random exploration process.

[Figure 5 about here.]

To show the generalizability of the approach
we also develop a learned model to estimate the
three joint angles of the finger along with the ap-
plied force at the tip. For a passive system, the
relation between joint angles and applied forces is
a one-to-one mapping and can be easily estimated
simultaneously. As the sensors are based on strain
sensing, the state predictions would be affected
by change in the dynamic properties of the finger.
Figure 6 shows how the force and joint angle pre-
dictions get affected with a change in stiffness and
density of the joint and finger respectively. As the
joint angles are directly related to the strain val-
ues observed, change in stiffness does not affect
the joint angle predictions. The external force es-
timation would however be affected by a change
in joint stiffness. Other dynamic properties like
change in damping, mass does not affect both the
state estimation models significantly. So proper
care must be taken in the applicability of the strain
sensors for estimating external forces, especially
in variable stiffness mechanisms, unlike kinematic
state estimation.

[Figure 6 about here.]

4. Experimental Results
Three sets of experimental tests are performed

to validate the proposed control architecture. The
first test investigates the effect of the proportional

gain on the tracking performance. The second
study measures the steady-state error of the force
controller and the third one examines the fre-
quency response of the controller. All the results
are displayed in force units after a simple cal-
ibration of the ground truth sensor with known
weights and zero offsetting of the ground truth
sensor at the start of each trial.

4.1. Proportional Gain Tuning
The effect of the proportional gain on the

tracking of a dynamic force profile is shown in
Figure 7. All the data is filtered with a moving
filter of 0.4 seconds window for clarity. As ex-
pected, higher gains lead to oscillations and in-
creased instability, whereas lower gains lead to
less accurate tracking. Hence, for all the dynamic
experiments a proportional gain value of 25 was
used and for the steady state experiments, a pro-
portional gain of 10 was used. Note that the over-
all stability of the controller is dependent on the
accuracy of the state estimator, parameters of the
PID controller, delays in the system and the de-
sired force profile. Adding a derivative compo-
nent can improve the stability and accuracy of the
system, but it will be difficult due to the noise in
the sensor data and the sensor delay as shown in
the simulation section. The sensor response to the
periodic force profile over each cycle is shown in
Figure 8 to illustrate the high temporal nonlinear-
ity and noise in the system that must be compen-
sated by the LSTM network. The average runtime
for each component in the control architecture is
shown in Table 1. The major delay introduced
in the system is by the on-demand data acquisi-
tion system. This can be reduced significantly by
parallel data acquisition and data synchronization,
however, this is beyond the scope of this paper.
The next section presents the frequency response
of the soft-bodied system.

[Figure 7 about here.]

[Figure 8 about here.]

[Table 1 about here.]

4.2. Steady-State Performance
To measure the accuracy of the state estima-

tor and the controller, we perform a constant force
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tracking at low control gain (Kp=10). Fifty ran-
dom force values are selected and send as com-
mands to the closed-loop controller. The con-
troller runs for 8 seconds (Figure 9). The robot
is reset to its zero position after every target and
the LSTM network is also reinitialized. There is
no waiting time between each trial. The predic-
tion and actual forces applied at the end of the
control cycle is shown graphically in Figure 9a.
As we are controlling the forces applied by the
finger tip on the environment, there can be a lag
from zero applied force to a positive force value,
depending on how far the finger is from the exter-
nal environment. Errors caused by the inaccura-
cies in the LSTM prediction can be observed by
the mismatch between the actual-predicted data
points. The errors cause by the improper design
of the PID controller and the UR5 controller can
be observed by the deviations in of the predicted
data points from the unity-slope line. Note that the
tracking of the predicted force with respect to the
desired force is independent of the accuracy of the
state estimator. The average error at the end of the
control cycle for the 50 points was 0.17± 0.14N .
An example of the closed-loop tracing is shown in
Figure9b. Even though the ground truth sensor is
zeroed at the beginning of the experiment, there
can sometime be shifts in the ground truth values
due to the interfacing of the FSR. This can also
affect the sample data for learning. We have ig-
nored the errors incurred by this in our analysis.
This can be easily rectified by using better ground
truth force sensors. Note that the response time of
the controller is dependent on how far the finger is
from contact with the environment.

[Figure 9 about here.]

4.3. Frequency Sweep
The frequency response of the closed-loop

controller is affected by the dynamics of the
sensors, the soft-bodied system, the PID con-
troller, and the robotic manipulator. As any visco-
elastic material will act like a low-pass filter, it
would significantly reduce the zero motion band-
width. However, there are several other advan-
tages gained in terms of stability, energy storage
etc.43 The force tracking on a chirp signal is
shown in Figure 10. All the data is filtered with

a moving filter of 0.4 seconds window for clarity.
The prediction accuracy of the LSTM network is
not affected by the frequency of motion indicating
that the learned model has generalized very well,
even to high frequency motions. Unlike the sim-
ulation studies, we restrict our motions to a cer-
tain frequency limit to avoid damages to the sys-
tem. Some offset between the ground truth and
predicted can be seen. This is probably because
of the shifts in the ground truth values due to the
interfacing of the FSR as mentioned in previous
section. Using a well calibrated force sensor in-
stead should reduce this error. The controller has a
cutoff frequency around 1 Hz. The corresponding
sensor data from which the LSTM network pre-
dicts the true force values is shown in Figure 10.
We can see that all the sensors drift by varying
amounts and have varying sensitivity to the ap-
plied force. This is because the sensors are placed
in random configurations and hence undergo dif-
ferent strain profiles.

[Figure 10 about here.]

5. Conclusion
This paper presents a learning based approach

for closed-loop force control with embedded soft
sensors on a general robotic system using the tem-
poral modelling properties of recurrent neural net-
works. To the best of our knowledge, this work is
the first step towards the development of a closed-
loop controller for a non-collocated soft robotic
system with embedded soft sensors. The key idea
behind the process is the use of stateful LSTM
networks and a batch sampling process that al-
lows the learned network to be reinitialized at any
point. With the learned LSTM network, a sim-
ple proportional feedback controller is designed
to close the force control loop. The performance
of the overall control architecture is then analyzed
for both static and dynamic targets.

A straightforward extension of our work is to
expand the controller for multi-axis force control.
This would require additional sensing elements
embedded in the system for similar accuracy and a
multi-axis force sensor for the ground truth data.
Another topic of future interest is the incorpora-
tion of other sensing modalities to improve the
prediction of the LSTM network. This could be
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in the form of visual44 or base force sensor data.45

The current setup can be modified to solve high-
level control tasks that require force information
as a feedback signal. This can be done by adding
a hierarchical control policy on top of the LSTM
model or directly learning the control policy pa-
rameterized as a recurrent neural network.
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Figure 1. Experimental Setup.
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Figure 2. Behavior of a single embedded soft sensor to external force over time.
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Figure 4. Control architecture for closed-loop force control with the LSTM network.



CLOSING THE LOOP WITH EMBEDDED SOFT SENSORS 15

(a) Simulated anthropomorphic finger.
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Figure 5. Closed-loop force control with the simulated soft finger.
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Figure 6. Change in prediction accuracy when the dynamic properties of the finger changes without retraining.
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Figure 9. Steady-state response of the closed-loop force controller.
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Figure 10. Time response of the closed-loop force controller to a frequency sweep.
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Table 1. Runtime for each process in the controller

Process Average Runtime (sec)
Overall Control Loop 0.04±0.004

Data Acquisition 0.031±0.004
LSTM Prediction+ UR5 Command Time 0.009±0.002


