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S E N S O R S

Electronic skins and machine learning for intelligent 
soft robots
Benjamin Shih1, Dylan Shah2, Jinxing Li3, Thomas G. Thuruthel4, Yong-Lae Park5, Fumiya Iida4, 
Zhenan Bao3, Rebecca Kramer-Bottiglio2, Michael T. Tolley1*

Soft robots have garnered interest for real-world applications because of their intrinsic safety embedded at 
the material level. These robots use deformable materials capable of shape and behavioral changes and allow 
conformable physical contact for manipulation. Yet, with the introduction of soft and stretchable materials to 
robotic systems comes a myriad of challenges for sensor integration, including multimodal sensing capable of 
stretching, embedment of high-resolution but large-area sensor arrays, and sensor fusion with an increasing 
volume of data. This Review explores the emerging confluence of e-skins and machine learning, with a focus 
on how roboticists can combine recent developments from the two fields to build autonomous, deployable soft 
robots, integrated with capabilities for informative touch and proprioception to stand up to the challenges of 
real-world environments.

INTRODUCTION
Skin plays an essential role for biological systems as a barrier between 
an organism’s external environment and its internal components. 
Embedded within its layers is a dense network of mechanical, chemical, 
vibrational, temperature, and pain receptors, which work in coordi-
nation to enable somatosensation in skin. These capabilities would 
also be incredibly useful for robots. Electronic skin (e-skin) research 
was originally motivated, in part, by a desire to understand biological 
sensing, but the lessons learned can help improve the design of 
robotic systems. To sense, plan, and act, robots require a variety of 
sensors embedded throughout their bodies so that they can obtain 
information about their environment.

The field of soft robotics (1) studies the use of flexible and 
compliant materials as components for building robots, instead 
of traditionally rigid components such as metals. Soft robots often 
draw inspiration from nature, which has evolved organisms that can 
operate in unstructured environments. In contrast, current robotic 
systems are usually confined to structured laboratories or warehouse 
environments. In addition, natural environments typically contain 
several objects of varying material properties that further complicate 
tasks such as object interaction and locomotion.

The overlap between e-skins, soft robotics, and machine learning 
is continually growing, and recent advances are summarized in 
Fig. 1. Soft actuation has improved tremendously in capabilities 
(Fig. 1 bottom), and soft sensors and e-skins exhibit a wide range 
of complexities (Fig. 1 left).

Several recent advances have combined principles from each field, 
often physically manifesting in the form of sensorized fingers and 
grippers (Fig. 1 top). Future breakthroughs in the field may come 
from further integration of sensors and actuators as roboticists move 
toward designing systems that rival the abilities of biological 
organisms.

Several reviews have covered related topics on e-skins and per-
ception in soft robots, including design and fabrication of e-skins 
(2, 3), wearable sensors (4), e-skins for interactive robots (5, 6), and 
future directions in sensing and perception for soft robots (7, 8). 
This Review examines recent developments in skin-based sensing 
for soft robots, covering hardware and fabrication techniques and 
machine learning techniques that translate robot perception into 
action planning. To limit the scope of this Review, we consider a 
soft robot skin to be skin sensors directly mounted on the surface 
[e.g., (9)] or embedded in a thin layer beneath the surface of the body 
of a soft robot [e.g., (10)]. To highlight the opportunities at the 
intersection of e-skin and soft robotics research, we cover a variety of 
interdisciplinary topics including fabrication, learning, and control.

INTERDISCIPLINARY TOOLS
Design and fabrication of integrated e-skins
Compared with rigid robots, the high mechanical compliance of soft 
robots enables safer and more efficient human-robot interaction 
(HRI) because they can seamlessly interact with the human body 
(11). Further advancement of soft robots requires high-performance 
electronics and sensors that can stretch continuously with their 
bodies. Recent research in artificial skin has mainly focused on making 
individual sensor devices with better performance, such as sensitivity, 
stretchability, and reliability over many use cycles (Fig. 2). To realize 
fully biomimetic skin for soft robotics, artificial skin should contain 
sensor arrays that are stretchable, cover large areas with a high 
spatiotemporal resolution, and have multiple functions that mimic 
diverse receptors of the human skin (Fig. 2A). These features should 
enable robots to use data-driven methods to extract rich information 
about their environment.

Increasing sensor density and quantity normally requires a larger 
number of interconnecting wires. To reduce this burden, sensor 
arrays are normally designed in matrix form. For example, a recently 
developed tactile glove comprising 548 force sensors was constructed 
using readily available materials and simple fabrication tools (Fig. 2B) 
(12). This sensor array recorded a large-scale dataset of tactile maps 
(about 135,000 frames), which was used to identify objects using 
convolutional neural networks. This work highlights the ability of 
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large-scale datasets collected by a high-density sensor array to enable 
not only a sense of touch but also the intelligent extraction of inform
ation from touch. Increasing the sensor density simply by scaling down 
a passive matrix architecture will reduce the amplitude of analog sig-
nals while increasing cross-talk between interconnects. If multiple 
sensors are sampled simultaneously, each line will produce electro-
magnetic noise, which will corrupt the signals being carried on neigh-
boring conductive traces. Furthermore, the large number of addressing 
lines will be difficult to manage as the number of sensors increases 
substantially. These problems can be addressed with an active matrix 
that pairs each sensor with a transistor to provide local signal amplifi-
cation and allows sensors to take turns transmitting information (13–16).

Active matrices with multiplexed signal transduction typically con-
sume less power than passive matrices because they require fewer 
sampling lines and do not need external circuitry (17). However, 
stretchable e-skins could allow better coverage of curved robot 
surfaces while allowing sensing of complex texture information 

through detection of deformation and vibration, mimicking biological 
skin. Recent advancements in organic electronics by Wang et al. (18) 
led to the creation of an intrinsically stretchable transistor array with 
347 transistors per square centimeter. Their proof-of-concept demon-
stration illustrated that such a conformable active matrix could ac-
curately map the force applied on each sensor. These capabilities 
indicate that stretchable active matrices containing soft sensors and 
transistors are a promising step toward soft robotic skin with high 
resolution and high data fidelity.

Making multilayered sensor arrays in a three-dimensional (3D) 
lattice can further increase the sensor areal density and allow greater 
integration of different sensor modalities. Just as receptors in bio-
logical skin are embedded at various depths, engineers can embed 
sensors that are sensitive to different stimuli in different spatial 
locations. For example, pressure, shear, and strain sensors can be 
distributed in different layers of the e-skin to achieve optimized 
sensitivity. Huang et al. (19) demonstrated that stretchable electronics 
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Fig. 1. Trends in the intersections between e-skins, soft robotics, and machine learning. (Left) A range of e-skins and soft sensors that increase in complexity, from 
bottom to top, by metrics including density, resolution, and fabrication (19, 21, 26–30). (Middle) Soft robots and e-skins that merge actuation and sensing (10, 37–45, 47), 
from left to right and top to bottom. (Bottom) Soft robots that focused primarily on actuation (31–35), from left to right. Red boxes indicate work that has leveraged 
machine learning in the processing of their sensor information.
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integrated in 3D can be built with a layer-by-layer method using 
transfer printing of predesigned stretchable circuits on elastomers 
with vertical interconnects. This stretchable human-machine inter-
face had a four-layer design that offered multimodal sensing and 
had integrated circuits for wireless data transfer. Using strain engi-
neering methods, 2D structures can also be assembled into 3D elec-
tronic systems with sensing capabilities. Semiconductor materials can 
play critical roles in this context, through demonstrations of com-
plex, mechanically assembled 3D systems for light-imaging ca-
pabilities that can encompass measurements of the direction, 
intensity, and angular divergence properties of incident light.

3D printing has also been used to directly print sensors in soft 
robots to improve both exteroceptive and interoceptive capabilities 
(20). This work highlights how a 3D integration framework enables a 
higher integration density on stretchable substrates than single-layer 
approaches and allows new functionalities that would be difficult to 
implement with conventional layer-by-layer designs.

Processing complex tactile information from a sensor array 
requires efficient signaling and sampling methods. In human skin, 
stimulation of the receptors is converted into a series of voltage 
pulses sent to the nerves. This inspired researchers to develop arti-
ficial receptors and afferent nerves to convert tactile information to 
digital pulses at the site of sensation (21, 22). The signal could 
potentially be perceived by a user’s nerves and brain, thus directly 
linking the human brain with soft robotic prosthetics. For example, 
Kim et al. (23) recently developed a flexible artificial afferent nerve 
that can effectively collect pressure information from arrays of pressure 
sensors and convert them to action potentials to activate muscles.

Biological skin contains receptor networks that can detect various 
stimuli, such as vibration, humidity, and temperature. Several studies 
on e-skin sensor arrays focused on the classification of a single type 
of information, such as force, shape, or direction of motion. The next 

generation of e-skins should integrate multimodal sensor arrays to 
capture richer sensory information than their predecessors. Recently, 
Lee et al. (24) reported a neuromimetic architecture that enabled 
simultaneous transmission of both tactile and thermotactile inform
ation (Fig. 2E). The pressure- and temperature-sensitive transducers 
can both be communicated through the pulse signatures by a single 
electrical conductor. As a biomimetic signaling method, this approach 
is promising for reducing wiring and computational requirements 
when a robot is covered with thousands of sensors. Multimodal sens-
ing could also be achieved through integration of multiple stretchable 
optical fibers, which has been shown to be effective at localizing and 
estimating force in soft actuators (25).

Overall, many innovations are required for realizing high-density 
and multifunctional sensor arrays for soft robots. A close collaboration 
between roboticists and materials scientists is needed to develop 
high-performance stretchable conductors for electrodes and inter-
connections and stretchable semiconductors for building active 
matrices and signal amplifiers. Different sensing modalities and 
integration architectures should also be explored. Lastly, hardware 
and algorithms for data processing should be considered during the 
design of sensory systems, and their performance should be evaluated 
on a holistic range of practical robotic tasks.

Skin-based sensing for soft robots
As sensors are increasingly integrated into soft robots, we can imagine 
a conceptual plane that categorizes research based on the sophistication 
of actuation and sensing independently (Fig. 1). Stand-alone sensors 
lie on the y axis; some consist of simpler strain sensors [the bottom 
three images in Fig. 1 left (26–28)], whereas others have more sophis-
ticated sensing schemes, including distributed or multimodal sensing 
[the top four images in Fig. 1 left (19, 21, 29, 30)]. The x axis, repre-
senting actuation-focused soft robots, shows examples of increasingly 

Meissner corpuscles
(vibration)

Free nerve ending
(temperature)

Merkel disk
(touch)

A  Active matrix D Three-dimensional integration

B  Passive matrix

C  Multimodal sensing array

E  Skin

Touch
receptors

Pressure
receptor

Heat, pain,
and cold
receptor

Fig. 2. Sensor arrays enable e-skins to extract information about their environment. (A) Human skin with various receptors used to sense stimuli. (B) A scalable 
tactile glove containing a passive matrix of 548 force sensors for the collection of large datasets (12). (C) 2D sensor array used to generate a profile of pressure intensity 
from experimental mapping of the pixel signals using an active matrix (126). The icons at the bottom represent biological analogies: Merkel disks, Meissner corpuscle, 
and free nerves. (D) A 3D array of electronic sensors assembled from 2D electronics (127). (E) Multimodal sensor array that can capture both pressure and temperature 
information (24).
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complex soft systems that can walk (31, 32), grow (33), swim (34), and 
operate autonomously on chemical fuel (35) (Fig. 1 bottom). Last, many 
recent works have begun exploring the intersection of the actuation 
and sensing (Fig. 1 middle). Several of them embedded strain sensors for 
state estimation or tactile sensing in a finger-like structure (10, 36–44), 
whereas the others mounted their skins externally (45–47). As both 
areas progress, we envision further integration of increasingly sophis-
ticated actuation and sensing, extending into the top-right quadrant 
of the conceptual plane.

Access to higher-resolution data about touch will increase the 
ability of soft robots to perceive the complex deformations that they 
experience during tasks, including locomotion and manipulation. 
Today’s discrete sensors, which are built with high sensitivity and 
selectivity, can be tailored to sense deformation modes in a localized 
region or known environment with high confidence (46, 48). However, 
this sensing paradigm is insufficient in dynamic or unknown environ-
ments where robots will experience substantial deformation because 
robots do not yet have the level of sophistication of human skin 
receptors or the human brain to collect a broad range of information. 
In addition, many robots are unable to process the volume of inform
ation to accurately determine the environment or the object being 
sensed. The transition from discrete to continuous sensing and the 
shift from structured to unconstrained environments both require 
e-skins that can rapidly collect and process large amounts of inform
ation. The added complexity from both transitions compounds the 
processing required to interpret the signals.

Several designs of skin-like sensors have been used in soft robotics. 
Many of these sensors contain conductive and stretchable materials 
to produce resistive or capacitive strain sensors (10, 26, 49, 50). 
Other groups have used optical devices such as cameras and optical 
fibers to sense deformations within an actuator (51–53). Several of 
these existing sensors are well suited for measuring characteristics 
such as strain, pressure, and bending but do not enable the high 
sensor densities or resolutions that have been demonstrated in e-skins. 
Soft robots would benefit from integration with e-skins, such as the 
skin-like sensor arrays that have been deployed in medical applica-
tions or directly on skin (22, 29, 54–56).

Currently, soft skin-like sensors have been deployed in several 
ways. Some groups used their sensors as wearables; Mengüc et al. 

(57) used liquid metal sensors to measure human gaits using a 
sensor fabrication process first presented by Park et al. (27). The 
resistance of these sensors increases as the embedded microchannels 
inside the elastomer matrix are stretched because of the increased 
length and decreased area of their bulk liquid-metal channels. Others 
incorporated their sensors with robots: Boutry et al. (58) paired a 
shear force sensor with a robot arm to allow robotic hand control. 
Booth et al. (47) demonstrated reconfigurable, actuatable e-skins that 
could control the motion of deformable inanimate objects from 
their surface. Zhao et al. (43) embedded optical sensors within soft 
pneumatic fingers, which they then integrated with a Baxter robot. 
As skin-based sensing capabilities continue to improve, the goal is 
to develop capabilities that match or outperform biological systems 
(top right corner of Fig. 1).

Machine learning for soft e-skins
As e-skins increase in resolution, their signals could be processed to 
detect higher-order deformation modes and higher-level notions about 
the environment, such as material type. However, obtaining this 
information requires algorithms that can extract useful information 
from large quantities of data. To handle the vast amount of data that 
e-skins can provide, machine learning is emerging as a versatile tool 
for making sense of large quantities of data (Fig. 3). For example, 
Piacenza et al. (59) obtained high-resolution data from a robotic 
fingertip and used ridge regression to process this data to estimate 
the locations of indentations. Similarly, Larson et al. (60) used 
convolutional neural networks to learn deformations on a sensor 
array that can interpret human touch in soft interfaces. At the level 
of abstraction of the entire robotic system, Van Meerbeek et al. (53) 
tested various learning algorithms to estimate the twist and bend 
angles in sensorized foam, finding that k-nearest neighbors (kNN) 
outperformed other common algorithms, including support vector 
machines (SVM) and multilayer perceptrons. In addition, researchers 
have also focused on recurrent neural networks, which have been 
shown to be advantageous for learning patterns in time series data 
(36, 39, 61, 62).

Because of the complexity of the mapping between raw sensory 
information and relevant functional abstractions, information theory 
and machine learning will play a large role in bringing tactile sensing 
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to human-like performance levels. In particular, the subfield of rein
forcement learning (RL) will be important for developing closed-loop 
control for tactile feedback. Suitable algorithms and architectures for 
analogous tasks in soft robotics can be developed by learning from biolog-
ical processes. For example, in computer vision and machine learning, the 
hierarchical nature of visual processing (corresponding to compositional 
functions) (63) has recently enabled deep neural networks to achieve 
human-like performance across a variety of visual processing tasks (64). 
Processing signals from arrays of tactile sensors may benefit from 
similar techniques, as sets of sensor readings have information encoded 
in spatial relationships that can be naturally represented using matrices.

Tactile exploration can benefit from recent developments in 
learning-based simultaneous localization and mapping algorithms. 
Notably, Mirowski et al. (65) used an asynchronous advantage 
actor-critic algorithm for navigating in a complex environment and 
additionally solved auxiliary prediction tasks that made the RL prob-
lem faster and more data efficient. Chen et al. (66) showed a direct 
policy learning algorithm with spatial memory and bootstrapped with 
human-mediated imitation learning without explicit task rewards. 
In the absence of continuous reward functions, actor-critic algorithms 
are preferred because they require fewer samples.

Similarly, tactile manipulation tasks can use insights from learning-
based manipulation controllers. A general trend observed in such 
works is the success of model-based RL (67) or learning by demon-
stration (68), approaches that leverage techniques from control theory 
or human knowledge, respectively. There has been a successful solu-
tion for the direct learning of control policies for dexterous manip-
ulation, but it relied on the availability of an accurate simulation 
environment (69). Until robot simulators can model soft-body 
dynamics that reliably transfer to real robot hardware, such ap-
proaches are difficult to apply to soft robots and deformable objects. 
For specific simple tasks, it might be easier to find a direct policy 
than to fit a general-purpose model of the system dynamics (70).

APPLICATIONS OF E-SKINS
Shape sensing
Whereas environmental sensing helps a robot understand its sur-
roundings, having a self-model of the robot’s body is important for 
planning trajectories and actions within that environment. For 
robots primarily composed of rigid components, the geometry of 
each segment remains the same throughout the robot’s lifetime, and 
relative rotations or translations of links provide enough additional 
information to fully specify the overall changes in shape. However, 
for soft robots, individual segments can continuously change their 
shapes, via both intentional and unintentional deformation modes, 
which complicates modeling and sensing schemes. Complementing 
recent work on soft sensing (7), the direct sensing of surface de-
formations would enhance the functionality of soft robots.

One approach to sensing the shape of soft robots involves pair-
ing a model with a relatively low number of sensors, typically on the 
same order of magnitude as the number of controllable degrees of 
freedom in the system. A great deal of progress has been made in 
modeling manipulators that can be parameterized by a curve in 
3D space (71). These models have even been coupled with sensing 
mechanisms to enable closed-loop control of continuum manipulators 
(72). Some approaches embedded sensors into other soft robotic 
components, such as bending actuators, to achieve closed-loop 
control in a low-dimensional task space (73).

The primary drawback of this type of approach is that when other 
unplanned deformation modes are introduced, such as buckling or 
a change of material properties through damage or natural material 
aging, the models accumulate error. In addition, it is unclear how to 
generalize these advances to reconfigurable soft robots (74) or 
robots that have more complex morphologies. For example, recent 
simulations suggest that there is a wide range of soft robot morphol-
ogies that could produce useful locomotion, including quadrupedal 
shapes and various oddly shaped exteriors (75). All these classes of 
robots would benefit from sensing mechanisms with fewer assump-
tions about the robot’s mechanical properties.

The ideal shape-sensing system could stretch with the robot’s sur-
face without affecting its kinematics or dynamics, sense shape with-
out external components, and be thin. E-skins designed for wearable 
applications should accommodate the strains of about 55 to 75% 
experienced by biological skin (22), and a similar range should be 
suitable for most soft robotic applications, although different robots 
experience different surface strains. Although a perfect solution for 
shape sensing of soft robots does not currently exist, recent advances 
in the field of flexible shape-sensing e-skins (Fig. 4) have the poten-
tial to greatly improve the capabilities of soft robots.

In contrast to that of soft skins, most work on shape-sensing 
e-skins treats the skin as an inextensible sheet of rigid elements joined 
by known axes of rotation (Fig. 4, A and B). The primary challenge 
is thus estimating the relative orientation between sections with known 
geometries to determine the spatial locations of discrete points within 
the sheet. In one early study, Hoshi and Shinoda (76) arranged 24 
printed circuit board (PCB) “nodes” into a mesh and estimated 
internode rotations using accelerometers and magnetometers (Fig. 4A). 
Building upon this work, Mittendorfer and Cheng (48) developed 
rigid sensorized hexagonal PCBs that could be integrated into semi-
flexible sheets and wrapped around robots (Fig. 4B). The nodes 
contained accelerometers similar to the work by Hoshi and Shinoda 
(76) and had similar assumptions (PCBs are free to rotate but cannot 
be stretched), but rotations between neighboring PCBs were calcu-
lated by obtaining at least two orientations of the skin-per-skin 
shape and solving a constrained Procrustes problem for aligning 
matrices of data points in real time. Hermanis et al. (77) then used 
a grid-like arrangement of accelerometers and gravitometers on a 
flexible fabric sheet. The sheets were demonstrated in a dynamic state 
estimation task where a user wore a shirt equipped with the shape-
sensing sheets while bending and crouching.

In contrast to the discrete sampling methods mentioned above, 
other approaches leveraged techniques from machine learning and 
statistics to process various sensing signals and extract a continuous 
estimate of the shape of the skins (Fig. 4, C and D). This kind of 
data-driven technique will be increasingly useful as the sensory 
spatial density increases, as discussed throughout this Review. For 
instance, Rendl et al. (78) used regularized least squares to process 
data from 16 piezoelectric bend sensors on a plastic sheet [polyethylene 
terephthalate (PET)] to approximate the shape of the sheet as a com-
bination of several shape primitives. This created a flexible system that 
could sense the bent state of the sheet with a roughly centimeter-level 
accuracy over an approximately A4-sized sheet. Another study 
used relatively inextensible optical fiber Bragg gratings arranged in 
a circle on the top and bottom of a silicone e-skin (Fig. 4C) (79). The 
relation between the strains on the fiber and the shape of the sheet 
was extracted from training data using a feed-forward artificial 
neural network containing one hidden layer for computation between 
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the input and output layers. In a similar spirit, an array of optical 
fibers were twisted through an elastomeric foam, and their outputs 
were sent to several machine learning algorithms (including kNN, SVM, 
neural networks, and decision trees) to predict the mode of deformation 
and angle of deformation of their structure (Fig. 4D) (53). These 
approaches all dealt well with a limited set of deformations and, in 
principle, should work for a wider range of deformations when paired 
with a more expressive (deeper) network. However, none of these ex-
isting works can mechanically accommodate large in-plane strains, 
primarily because of the inextensibility of the optical fibers used.

Toward feedback control of soft robots
The intrinsic material compliance of soft robots can protect both 
the robot and the environment from damage when interacting with 
unstructured environments. This property makes soft robots ap-
pealing in contexts such as HRI and robotic manipulation, where 
safety around fragile objects can be important (11, 80). E-skins have  
great potential to enable soft robots to interact intelligently with 
their environment.

In addition, tactile information obtained through skin is vital for 
a variety of general robotic control tasks. The type of sensor modality 
to be used, the processing algorithm, and the response from the body 
all depend on the task at hand (81). These tasks can be divided into 

three broad categories depending on the flow of information or 
energy and the primary system of concern (Fig. 5).
Manipulation
Robotic manipulation involves altering the state of an external 
object to a desired set point using internal actuators. The role of 
tactile sensors is mainly to obtain state information of the external 
object. As energy flows to the environment, stability of the object is 
of high concern. Grasp force optimization and stabilization is one 
of the most basic manipulation tasks involving tactile sensors (82). 
Early works were built on the estimation of normal and tangential 
forces on the hand to detect slip and react accordingly (83). Recent 
works used learning-based methods for slip onset prediction with 
adjustment and grasp failure detection with adjustment because of 
the ability of these methods to handle complex multimodal sensory 
information (84) and their generalizability (85).

Other manipulation studies used low-dimensional sensor space 
representations to improve performance in certain situations. 
Van Hoof et al. (86) used autoencoders to generate a low-dimensional 
representation of their complex and continuous tactile data. Con-
trol policies learned using this latent space representation required 
fewer rollouts and were more robust to noise. Another study was on 
calibration and self-modeling of a fully sensorized body for whole-
body manipulation (87). Recent work has shown that this process 
can be fully automated using control signal information and other 
sensor modalities, including inertial measurement units (88).

Perhaps the most complex manipulation task is in-hand manip-
ulation, which imposes strict requirements on the body, brain, and 
sensors (89). Current progress in in-hand manipulation using 
tactile sensors is primarily limited to rolling circular objects (90). On 
the other hand, notable developments toward in-hand manipulation 
have been achieved with external visual tracking systems (69). How-
ever, control policies trained using vision alone are scene dependent 
and require large quantities of training data, motivating further 
research into using tactile sensing during in-hand manipulation.
Exploration
Tactile exploration is the process of voluntary motion of the body 
based on the somatosensory feedback for identifying environmental 
properties (91). The environmental property of interest could be low-
level features, such as surface texture (92, 93) or temperature (94), or 
midlevel tasks, such as object classification (95, 96). However, to be fully 
autonomous, the higher-level process of selecting the best actions for 
obtaining better sensory information, also known as active exploration, 
must be considered. This is not trivial because the concept of an ob-
jective function and a reward function becomes difficult to define.

It is currently conjectured that human exploration is driven by a 
combination of extrinsic and intrinsic reward variables (97). Extrinsic 
rewards are task specific, such as classification of objects, whereas 
intrinsic rewards are task independent and hence more general, such as 
curiosity-driven exploration. Experiments suggest that humans primarily 
use six types of exploratory movements when exploring objects to 
determine their properties (98). Hence, there have been studies on 
acquiring these specialized closed-loop policies based on intrinsic 
rewards such as curiosity (99) or extrinsic rewards such as texture 
discrimination ability (100). To achieve efficient exploration with soft 
robots, a combination of tactile and proprioceptive feedback will 
likely be useful for effectively implementing such reward functions.

A first step toward an autonomous tactile exploration control 
architecture, referred to as tactile servoing by the authors, was 
proposed by Li et al. (101). By framing the control objective as 
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Fig. 4. E-skins that can sense their shape in 3D. Recent advances in shape-sensing 
e-skins use several sensing modalities. (A and B) Accelerometers and/or magnetom-
eters on rigid PCBs can rotate relative to each other and reconstruct their shape 
at discrete points. (A) “3D capture sheet” (76). (B) Hexagonal PCBs with integrated 
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the problem of following a trajectory in the sensor feature space, 
various autonomous sensory exploration strategies emerged. The 
emergent exploration strategies included maintaining contact with 
an object, edge tracking, and shape exploration of an unknown 
object. Exploration has also been framed as a force and pose control 
problem on an unknown object using tactile sensors for feedback 
(102). Additional tactile information obtained during the process 
was then used to estimate the compliance of the object. Recent works 
integrated active exploration with object discrimination (103). How-
ever, the midlevel processes were independent from the high-level 
exploration strategy, and the proposed algorithm was therefore 
relatively inefficient and slow. The next challenge in this area is 
to develop exploration strategies that run simultaneously and are 
regulated by the tactile feature extraction process. Such an algorithm 
would allow robots equipped with e-skins to efficiently process their 
sensory information to make informed decisions on how to move 
within the world to gather information and achieve at least locally 
optimal exploration strategies.
Reaction
Whole-body tactile skins are required for reacting to active envi-
ronmental forces applied by external agents (104). Here, the control 
objective is to estimate and react to external forces such that the 
body remains stable while executing a behavior. Often, the safety 
of the external agent, typically a human, becomes a higher priority 
than robot stability (105). Because reaction typically involves HRI, 
additional challenges arise from safety, context prediction, and 

adaptation (106, 107). Otherwise, closed-loop reaction using tactile 
sensing is similar to the closed-loop manipulation problem and is 
often implemented in parallel with manipulation tasks as in the case 
of slip detection (108).

The main challenges in whole-body sensing are the organization 
and calibration of many spatially distributed multimodal tactile sensing 
elements (109). Spatial calibration can be manually performed or 
automated using robot kinematics and action inference techniques 
(110). Data-driven methods are also promising for end-to-end models 
without an explicit kinematic/dynamic calibration (111). The most 
recent and comprehensive whole-body tactile sensing research was 
able to self-organize and self-calibrate 1260 multimodal sensing units 
and implement a hierarchical task manager composed of the fusion 
of a balance controller, a self-collision avoidance system, and a skin 
compliance controller (112).

OPPORTUNITIES AND OUTLOOK
The fields of e-skins and soft robotics have both experienced rapid 
progress in recent years. However, incorporating advances from both 
fields to produce intelligent, autonomous soft robots is a challenging 
task that will require progress in several key areas (Fig. 6). Here, we 
outline major open questions in this area and identify areas of 
research that could provide solutions.

Design and fabrication
The primary future challenges of developing sensor arrays for soft 
robots will be to design stretchable sensory arrays with wide band-
width and high dynamic range, resolution, and sensitivity. In addition, 
multimodal sensing would increase the robots’ knowledge of their 
environment, leading to richer HRI (Fig. 6, A and B). Sensing of 
pressure, shear, and vibration and even detecting the presence of 
chemical and biological markers in the environment would be useful 
for a wide range of applications, including manipulation, disaster 
response, and manufacturing. Recent efforts on integrating bacteria 
cells into soft robots have made it possible to directly detect and 
display chemical information on soft robots (44). Other major de-
sign challenges include choosing how many sensors to integrate 
into a skin and deciding how to place them intelligently. Resources 
are limited and require careful allocation.

Machine learning and information processing
Advancing the intelligence of soft robots will also require computa-
tional models that can extract useful information from sensor arrays. 
However, the details of how to develop and implement such algo-
rithms are unclear. For example, deciding which algorithms can most 
efficiently accomplish tasks in classification, regression, and fault 
detection; whether neural networks should be used; which architec-
tures are easiest to train; and whether there are trade-offs between 
efficiency and reliability are all open questions that need to be 
addressed. Answering these questions will necessitate collaboration 
among computer and data scientists, materials engineers, and 
neuroscientists. The result will be robots that are more aware of 
themselves, their environment, and their interactions with humans, 
yielding richer and more productive experiences for human end users.

Affective touch is a crucial form of nonverbal communication 
that humans use daily and is one application that would benefit from 
the combination of e-skins, soft robotics, and machine learning. In 
contrast, most robots currently are unable to understand gestures 
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Information processing
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Fig. 5. Closed-loop tasks where tactile sensing is essential. These tasks primarily 
differ depending on the system that determines the objective (denoted by the 
shaded boxes). The middle row consists of biological demonstrations of the tasks. 
The bottom row contains examples (69, 128, 129) of these capabilities in current 
rigid robots, which we expect to further improve in parallel with the integration of 
e-skins, soft robotics, and machine learning. Note that the presented division is not 
strict, and real-world tasks often involve a combination of all three elementary 
tasks. Yellow arrows indicate energy flow; blue arrows indicate information flow. 
(A) Manipulation involves altering the state of an external object to a desired set 
point using internal actuators. (B) Exploration involves motion of the body to 
account for uncertainties in the environment based on somatosensory feedback. 
(C) Reaction involves estimating and responding to environmental cues such that 
the body remains in a desired state.
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such as a pat on the back because either they do not have the sensors 
necessary to measure the interaction or they are not able to make 
sense of the affective contact.

Shape sensing
Despite the recent progress in shape-sensing e-skins, it is unclear how 
to extend these advances to the wide range of soft robots presented 
in literature. Soft robots experience large strains and complex de-
formations; key challenges include increasing the stretchability of 
shape-sensing skins and improving the resolution of sensors to 
detect small curvatures.

Once the field has reliable solutions for soft robot proprioception, 
it is conceivable that shape feedback would enable controlled shape 
change in robots. Current soft robots are not able to morph into 
specific configurations, yet even simple shape change has led to 
innovative solutions for a wide range of tasks, such as obstacle avoid-
ance (9), rolling locomotion (113), underwater locomotion (114), 
and camouflage (115). Larger shape changes could result in robots 
that switch between morphologies and corresponding locomotion 
gaits on demand (Fig. 6C).

Feedback control
Using sensorized skins to close the loop has the potential to improve 
the ability of soft robots to react to their environment, to locomote, 
to explore, and to manipulate objects using their deformable bodies 
(Fig. 6D). The use of soft tactile sensors for closed-loop control is 
still in its nascency. The few relevant studies in this area used low-
dimensional soft strain sensors for closed-loop kinematic or force 
control (73, 116, 117). This is surprising given the wealth of litera-
ture on soft sensing technologies and considering the intended 
application of these sensors (7). One reason for this discrepancy 
could be that soft sensors were originally developed for wearable 
devices and therefore used only for state estimation. Another reason 
could be the demanding performance expectations placed on soft sensors. 
Although it would be useful to develop drift-free, linear sensors with 
high gauge factors, biology suggests that workarounds are possible. 
For example, the human tactile sensing system is hysteretic, nonlin-
ear, time varying, and slow. Nature adapted to these drawbacks by 
developing hyper-redundant sensing networks and intelligent data 
processing techniques (118).

Along the same lines, various sensor design strategies can be 
found by observing nature. Tactile exploration likely requires the 

highest spatial resolution (around 2 mm), as evident from the dense 
mechanoreceptor distribution at the human fingertip (119, 120). 
On the other end of the spectrum, tactile reaction likely requires the 
lowest spatial resolution, as suggested by the poor spatial resolution 
across other parts of the body. Tactile manipulation lies in between, 
with an expected spatial resolution of 5 mm (121).

The type and the distribution of mechanoreceptors across the body 
also suggest the type of sensor technologies that would be useful for 
a particular task. Humans use distinct sensors for static and dynamic 
cues. Low-bandwidth mechanoreceptors (10 to 50 Hz) can be found 
mainly in the fingertip and would be essential for tactile exploration 
(122). Higher-bandwidth mechanoreceptors (50 to 400 Hz), which 
respond to the vibrations induced during object slippage, are 
distributed primarily at the palm of the hand (123). The response 
and the sensing areas of the mechanoreceptors are strongly depen-
dent on the skin morphology. Hence, it is vital to consider the design 
of the body and the motion capabilities for mimicking the dynamic 
receptors in our body.

Other insights can be gained by extending such an analysis to 
invertebrate biological organisms, such as octopuses. An octopus 
has several receptors, primarily chemoreceptors, located on each 
sucker. In addition, the octopus has strain receptors associated with 
its muscles and a relatively large brain for processing its receptor 
information. Despite these capabilities, it has a poor proprioceptive 
sense and cannot estimate the overall shape and location of external 
objects that it is handling. There is local proprioceptive feedback in 
each arm for low-level control, but the only feedback to the central 
nervous system comes through vision (124). Wells (125) conjectured 
that in flexible animals, motor control is hierarchical and pro-
prioceptive information must be used locally. Contrary to popular 
belief, the performance of an octopus in manipulation tasks is poor. 
Therefore, it might be necessary to incorporate rigid components in 
fully soft robots, if they are to be used for tactile-based closed-loop 
control tasks.

Outlook
Researchers have developed many interesting forms of actuation 
that more closely mimic the functionality and capabilities found in 
nature. The next step for the field is to develop biologically inspired 
tactile sensing for soft-bodied robots that can safely interact with, 
and explore, their environments. Current work tends to concentrate 
on the design and fabrication of soft robots and explores how 

A  Multimodal sensing B  Wearable robots C  Closed-loop morphing D  Dexterous manipulation

Fig. 6. Potential capabilities and technologies that could be achieved with e-skins and soft robotics. (A) Multimodal sensing would be useful during manipulation 
for detecting gripper states, object properties, and events such as contact and slip. (B) E-skins with an integrated human-robot interface could enable seamless assistive 
wearable robots and intuitive teleoperation of anthropomorphic robots. (C) When paired with the appropriate actuators, shape sensing would enable closed-loop changes 
of shape. (D) Closed-loop control algorithms would enable soft robots equipped with e-skins to succeed when performing complex tasks, including in-arm manipulation.
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machine learning can enhance soft robot perception. In the short 
term, the field can focus on deployable, high-resolution sensor skins, 
algorithms for processing the dense sensor information, and reli-
able feedback control for soft robots. The longer-term goal is robots 
that can touch and feel with the sensitivity and perception of natural 
systems.

We believe that future societies will include robots tightly inte-
grated with humanity. This includes in-home, assistive robots that 
can sense and understand gestures such as a pat on the back, collabora-
tive robots that work alongside humans, and exploratory robots 
that can navigate the unpredictable real world.
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