
1

Vol.:(0123456789)

Scientific Reports |          (2022) 12:335  | https://doi.org/10.1038/s41598-021-04204-9

www.nature.com/scientificreports

Manipulation of free‑floating 
objects using Faraday flows 
and deep reinforcement learning
David Hardman, Thomas George Thuruthel* & Fumiya Iida

The ability to remotely control a free‑floating object through surface flows on a fluid medium can 
facilitate numerous applications. Current studies on this problem have been limited to uni‑directional 
motion control due to the challenging nature of the control problem. Analytical modelling of the 
object dynamics is difficult due to the high‑dimensionality and mixing of the surface flows while the 
control problem is hard due to the nonlinear slow dynamics of the fluid medium, underactuation, 
and chaotic regions. This study presents a methodology for manipulation of free‑floating objects 
using large‑scale physical experimentation and recent advances in deep reinforcement learning. We 
demonstrate our methodology through the open‑loop control of a free‑floating object in water using 
a robotic arm. Our learned control policy is relatively quick to obtain, highly data efficient, and easily 
scalable to a higher‑dimensional parameter space and/or experimental scenarios. Our results show 
the potential of data‑driven approaches for solving and analyzing highly complex nonlinear control 
problems.

Remote control of floating objects on a fluid surface has numerous applications ranging from manipulation of 
micro-particles1–3 to macro-particles4. This is usually performed by transfer of energy through the surrounding 
 medium1,4,5 or through power sources that can be localized remotely such as magnetic fields and optical  forces6–8. 
Controlled manipulation through the surrounding medium is highly desirable as it is potentially more scalable to 
larger areas and varying objects using simple control sources. The control objective is to generate surface flows on 
the fluid surface by parametrically excited high-dimensional local wave sources. These create two-dimensional 
horizontal velocity fields at the surface, also known as Faraday flows, that have attributes of two-dimensional 
turbulence; characterised by surface vortices and local Lagrangian coherent  structures4,9–11. The study of these 
surface flows and their use for object transport has been limited due to difficulties in modelling this nonlinear 
system and the high-dimensionality of the environment. Hence, current work has been limited to empirical 
studies on uni-directional control of floating objects by one-dimensional wave  sources4. Surface flows generated 
by multi-periodic wave sources are even limited to harmonic  periods12,13. This work extends the state-of-the-art 
to the two-dimensional control of a floating object in water driven by multi-periodic wave sources using recent 
advances in deep reinforcement learning (DRL).

Developing optimal controllers directly from real-world experiments is appealing in fluid mechanics prob-
lems due to the difficulties in developing accurate mathematical models for  them14. However, such controllers 
should be able to handle the high nonlinearity, high-dimensionality, non-convexity and underactuated nature 
of the problem. Deep learning-based  approaches15 have been exceptional in handling the nonlinearity and 
dimensionality of the problem without falling into local  minima16–18. Transferring these deep architectures to 
reinforcement learning has also shown promise in solving optimal control and design problems, particularly 
in shape  optimization19,20 and flow  control21,22. DRL was also used to control a rigid object using directed fluid 
jets in an animation  game23. Nevertheless, the application of DRL for fluid control problems is still limited to 
simulation studies, anticlimactic to its actual  strengths21.The few experimental works on this topic have explored 
control strategies for drag reduction on a bluff  body24, dynamic control of microfluidic  devices25 and flow separa-
tion control over an  airfoil26.

This work presents the use of DRL for solving the problem of manipulating a free-floating object through 
surface flows. We structure the problem as an open-loop delivery task: given a randomized starting position of 
a floating object in a water tub, the controller must drive the object to a target location at the edge of the tub. The 
object is driven by the complex multi-period oscillation of a robotic arm submerged at the centre of the container 
(See Fig. 1). We assume that the problem can be described as a Markov Decision Process i.e. given the starting 
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conditions of the floating object and a control sequence, the final position of the object can be represented by 
a probability distribution. The motion of the floating object emerges from its interactions with surface flows 
generated in the fluid; a typical flow pattern is visualized in Fig. 2. The motion of the arm is governed by 11 
optimizable parameters (an average depth, 3 amplitudes, 3 frequencies, 2 phases, and 2 angles), which define 
oscillations in a small region about the tub’s centre (see Table 1 and Eq. 2). The controller receives no feedback 
about the object’s position until the end of each iteration, when a recorded camera feed is used to evaluate each 
attempt’s success. By restricting our actions to an open-loop case the physical setup is kept simple, requiring lit-
tle sensory feedback, and lending itself to applications where delicate closed-loop systems are undesirable and/
or impractical. After each iteration, an electromagnet is used to reset the object to a new starting position—see 
Experimental Setup and Supplementary Video 1.

In order to validate the selection of the 11 control parameters and their ranges, and to gain an insight into 
the key parameters necessary for DRL reward shaping, we first perform a global optimization routine for three 
selected tasks. Bayesian optimization (BO) is chosen for this preliminary investigation due to the high temporal 
cost of function evaluation, the relatively small number of control parameters, and the probabilistic nature of the 
problem  itself27. In addition, the method does not require derivatives to be calculated, using only the evaluated 
value to update its prior.

Figure 1.  Experimental setup.

Figure 2.  Manipulation of a free-floating object (in orange) by generating surface flows with a robotic arm. The 
free-floating object is guided across the water by the visualized surface flows.

Table 1.  The 11 control variables which parameterise the end effector’s vibrations.

Ax (mm) fx (Hz) φx (°) θx(°) Ay (mm) fy (Hz) φy(°) θy(°) Az (mm) fz (Hz) d (mm)

Min. 0 0 0 −10 0 0 0 −10 0 0 5

Max. 4 5 360 10 4 5 360 10 4 5 45
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Following this, a DRL algorithm—deep deterministic policy gradient (DDPG)—is used to learn the global 
controller for all  tasks28. DDPG uses an off-policy deep actor-critic architecture to learn control policies for 
continuous action spaces. Given the cost of physical function evaluation, DDPG is beneficial for its concurrent 
learning of the value function and the policy, enabling it to benefit from both successful and unsuccessful trials; 
the actor learns to propose suitable constant values for each of the 11 parameters, whilst the critic uses previous 
attempts to predict the reward that these values will achieve. With this functionality, a global controller can be 
developed over a period of days using only data which has been physically collected. Details of the the BO and 
DDPG implementations are given in Methods, and in Supplementary Section S1.

Our experimental results show that even with the open-loop constraint and the nonlinear surface flows, the 
control problem can be solved with reasonable accuracy. Using empirical studies we investigate the complexity 
of the problem and the strategy behind the optimal control solutions. We show that this global control policy 
can also be obtained through a few days of training with reward shaping, even with the deep architectures we 
employ for our controller. Our results show how Lagrangian coherent structures in the surface flows can be used 
to generate repeatable trajectories. We also report the generation of quasi-periodic surface flows and transiently 
steady flows based on the target location. As the motion of the floating object is determined by the surface flows, 
we also show that the control policies are potentially transferable to objects of various shapes and sizes.

Results
In order to study the feasibility and repeatability of the delivery task, we first use Bayesian optimization to confirm 
that the chosen ranges of the 11 control parameters are capable of performing three tasks: from a fixed starting 
position, the free-floating object must be driven to the container’s edge after rotating 0◦ , 90◦ , and 180◦ . Capillary 
forces are found to retain the floating object at the container’s edge once it first makes contact, such that the 
boundary r = rcontainer behaves as a stable outer attractor.

For each, a separate Bayesian optimization is run to find a set of control parameters which minimize both the 
total time taken and the object’s final proximity to the target location (Eq. 4). Figure 3(a) shows the progress of 
the three optimizations alongside 5 repetitions of the best actions after 650 iterations (Supplementary Videos 2 
and 3). Within the first 100 iterations low cost actions are found for the 0◦ case and significantly improved upon, 
leading towards a highly repeatable method at the end of the optimization. Though the 90◦ case takes longer to 
converge to a solution, a successful set of actions is still developed: only one of the 5 repetitions significantly devi-
ates from the average path, but still reaches the edge close to the target location. We see more variance in the 180◦ 
paths: though all of the repetitions come close to the target, none hit it directly, with one attempt never reaching 
the tub’s edge during the allotted time. The supplementary videos show the floating object’s smooth motion along 
the attractive Lagrangian coherent structures generated by the optimizations—despite small discrepancies in 
initial position, all repetitions follow qualitatively similar trajectories. Figure 3(b) compares the object’s minimum 
distance from the target location for each repetition: in all cases, this does not exceed 53 mm, suggesting that 
the delivery task is at least partially solvable within the chosen parameter ranges. Strong Lagrangian coherent 
structures develop around the object’s starting point, ensuring that the initial trajectories follow similar paths, 
imparting enough momentum to carry the object through regions in which the underlying flow is more chaotic 
(Supplementary Figures S11a and S11b). The 180◦ case’s spread of θ values at which the edge is reached arises 
from the paths being, on average, longer than those of the 0◦ and 90◦ cases, giving small discrepancies in starting 
position longer time to diverge before nearing their stable attractor. The subsequent large spread of trajectories 
is visualized in Supplementary Figure S13a, in which dynamic time warping is used to evaluate the similarity of 
repeated paths. This trade-off between unrepeatabilities of the trajectory and the target angles is also observed 
with the DDPG controller, implying that this is a fundamental limitation of the system itself.

The Bayesian optimization results provide an insight into the complexity of the delivery tasks, helping to shape 
the reward functions for future DDPG attempts. As expected, driving the object directly away from the oscillat-
ing end-effector is an easier solution to find and is more repeatable. As the angle and path length increase, the 
observed trajectory becomes more unpredictable and hence more difficult to obtain through search algorithms. 
The Bayesian optimization takes ∼500 iterations to guarantee a good solution for each task which, with an upper 
bound of two minutes for each control episode, amounts to approximately 16 hours of real-world experiments. 
Generating global controllers using thousands of these local solutions is hence infeasible for practical purposes. 
DDPG, however, should be able to exploit any structure in the state space and control solutions to greatly reduce 
the physical data required, enabling a controller to be developed within a reasonable time frame.

For our study two DDPG agents are trained and analyzed. The first agent (a) uses a naïve reward function 
(Eqs. 5 and 7) that is concerned only with minimising the distance between the object’s centre and the target 
location. Though this implementation is straightforward, it is highly inefficient, with its training progress in 
Fig. 4(a) showing little improvement over 4000 iterations (see Methods and Supplementary Figure S1) for details.

The second agent (b) uses a reward function (Eqs. 6a and 6b) shaped by observations made during the BO 
tests. Primarily, we observe that it is easier to move radially than angularly, and that longer paths to the target 
location are considerably more sensitive to small changes in the initial position and the control parameters. To 
counter this, the reward is shaped such that early outward motions are encouraged, rewarding solutions which 
hit the edge much more highly than those which avoid it. This leads to a sharp rise in reward near the start of 
training—Fig. 4(b)—as the controller learns to find these high-reward actions. From here, the average reward 
rises gradually, as the average error between final and target location on the container’s edge is reduced. In addi-
tion, actions are rewarded for reaching the edge in short time, discouraging excessively long paths that are prone 
to non-repeatability. The resulting action spaces and predicted rewards for both trained agents are illustrated in 
Supplementary Figure S6.
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Figure 3.  (a) Bayesian optimization results for the 0◦ , 90◦ , and 180◦ open-loop delivery tasks. After 650 
iterations, the best set of actions are repeated 5 times and the object’s path plotted. (b) Min/max boxplots of the 
floating object’s minimum distance from the target location—dmin—during the 5 repetitions,normalized by the 
container radius rc.

Figure 4.  (a) DDPG training using a naïve reward function that tries to minimise the distance between target 
and object. (b) DDPG training with rewards shaped using prior knowledge.
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This reward shaping technique allows the controller to develop a global control policy in a relatively short 
time using only the results of physical experiments. Not only are we able to obtain a higher reward faster, but 
the critic converges more rapidly for reward function b. For all further tests and analysis, agent b is selected due 
to its better performance.

Figure 5 compares the 11 control parameters proposed by the trained DDPG agents with those developed 
during the three Bayesian optimization tasks. The different patterns which can be observed between the two 
parameter sets demonstrate the non-uniqueness of the solutions. The DDPG solutions tend to be nearer the 
edges of the parameter ranges. With extensive training times these solutions would be expected to converge to 
a more optimal result: we next analyse the success of the proposed solutions after just a few days of training.

Due to the actor-critic architecture of DDPG, it is also possible to estimate the expected reward (Eqs. 6a 
and 6b) of a given action using the trained critic. The upper row of Fig. 6 plots these expected rewards over 
the entire 3D state-space, defined using the starting radius, starting angle, and target angle. Each is normalized 
over the range (−1, 1), as discussed in the Control Space section in Methods. The starting radius is incremented 
between columns. Regardless of this radius, strong diagonal bands demonstrate the ease with which the controller 
learns to push the object radially with high repeatability. As the angles separate, the predicted reward decreases, 

Figure 5.  The proposed action spaces for 0◦ , 90◦ , and 180◦ targets. Each of the control parameters is normalized 
in the range (−1,1).

Figure 6.  Predicted and measured rewards of the trained actor over the three dimensional start/target space, 
normalized over the range (−1, 1).
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reflecting the increased problem complexities encountered in Fig. 3(a). Only two cases are predicted negative 
rewards—the upper left cells of the first and third plots which require 180◦ rotations, though the predictions are 
still significantly higher than the minimum reward of −1.25. Interestingly, despite the radial symmetry of the 
setup, the lower right quadrants of the plots contain marginally higher rewards than those in the upper left. This 
is assumed due to the convergence location of the actor during training, though could be the manifestation of 
small asymmetries, such as fewer tracking errors in one half of the container.

These predicted rewards are tested through 1000 physical tests of the trained agent, randomized over the 
same state space. The measured reward distribution is plotted in Fig. 6’s lower row, where the predicted diagonal 
banded patterns are clearly visible. This reproduction of predicted behaviours suggests that the critic has learned 
a number of the physical system’s governing behaviours, using both successful and unsuccessful episodes to 
converge to a functional solution. As predicted, the actor performs best for radially-outward tasks, transitioning 
towards the lowest success rates for the 180◦ tasks. The comparatively small effect of the starting radius comes 
in part from the elimination of extreme values for the starting positions (See Control Space), but also reflects 
the shaped reward of Fig. 4(b), which encourages the actor to rely on radially outward flows. Still, in both the 
measured and predicted cases, higher starting radii are associated with fractionally higher rewards; those which 
start closer to the end-effector are more prone to be affected by localised transients in the first seconds of motion, 
making the initial direction of the object less predictable. Additional quantitative results on the trajectory paths 
and reaching error from the 1000 physical tests of the trained agent are presented in Supplementary Figures S7, 
S8 and S9.

To systematically test the actor, 5 tasks (marked i–v) are chosen from Fig. 6, covering a range of starting and 
target positions. The tasks cover a range of predicted/measured successes: based on Fig. 6’s reward values, the 
agent appears to have developed partial or full solutions to Tasks i-iv, whilst Task v’s 180◦ rotation is predicted an 
average reward of only 0.27. In the rest of this paper, we analyze and compare the solutions developed for each 
path and also try to explain why task v is more difficult to achieve.

Firstly, the trained agent’s proposed actions for each of the 5 tasks (Supplementary Tables S2 and S3) are 
performed 10 times, with the tracked paths shown in Fig. 7(a), and Supplementary Video 4. Five repetitions 
of the proposed actions after only 20% of Fig. 4(b)’s training are also plotted for the tasks, illustrating how the 
global controller’s behaviours develop over the final 4000 iterations of training. In all 5 tasks, the highest reward 
increases during these 4000 iterations, as more data becomes available. The reward shaping of Fig. 4 is apparent 
in Tasks i, iii, and iv: the agent learns to move the object radially outwards during the first 1000 training iterations 
before adjusting its trajectory to improve its reward. The mean reward increases in only 3 of the 5 cases: Tasks iv 
and v both demonstrate slight decreases, developing bifurcation points from which only one path leads to a high 
scoring outcome. This is why reward shaping is crucial in encouraging these high-risk-high-reward behaviors.

The increasing difficulty of Tasks ii-v is clear in Fig. 7(b), comparing the trained agent’s minimum distance to 
the target during the 10 repetitions. A satisfying solution to Task v is not developed—all other tasks demonstrate 
at least one path which passes within 50 mm of the target, with all of Task ii and iii’s repetitions passing within 
72 mm. Small changes in initial position often cause the longer path of Task iv to prematurely reach the outer 
attractor—those which don’t exceed this critical point continue to highly rewarded solutions, explaining the larger 
range of Task iv’s solutions in Fig. 7(b). Overall, the trained agent is yet to reach the ability of the fixed Bayesian 
controllers presented in Fig. 3(b), suggesting that further training would lead to increasingly robust solutions.

Although all the tasks are repeated with the same starting position and control actions, the five tasks gener-
ate solutions with varying degrees of repeatability (Supplementary Figure S13b). Though our choice of control 
method assumes the underlying flow—and the resulting forces experienced by the floating object—to be fully 
deterministic, small amounts of stochasticity are still introduced into the experimental setup by imperfections 
and environmental noise. As such, control methods must rely on Lagrangian coherent structures to direct the 
object along the desired path and provide it with sufficient momentum to pass through more chaotic regions of 
the flow, as visualized in Supplementary Figures S11c and S11d. The increased length of the path developed to 
achieve this for Task iv increases the probability that these local stochastic perturbations about the Lagrangian 
structure will, at some point, be sufficient to exceed the separatrix with another attractor or mixing region. In 
Fig. 7(a), we can see that this occurs most frequently near the stable outer attractor, such that this region of the 
path acts as a bifurcation point during experimental repetitions of the task. This results in the trajectory of the 
controller being probabilistic for each run, even in the presence of unmodelled noise, justifying our Markovian 
assumption of the underlying dynamics (This is also confirmed by the Gaussian error distribution in Supple-
mentary Figure S8).

Figure 8 uses K20 glass microspheres to visualize the generated flows of the 5 tasks: in iv and v, these flows 
appear to be steady, and the overlain trajectories follow the visible streamlines. Conversely, the flows of Tasks i-iii 
are quasi-periodic in nature, which can be seen in Supplementary Video 5. Their observed periods (73 s, 53 s, and 
3.5 s respectively) can be estimated by assuming that the x and y oscillations dominate the controller’s behaviour:

giving predictions of 72.3 s, 53.0 s, and 3.4 s. The actions proposed for Tasks iv and v are both dominated by y 
oscillations, such that Eq. 1 gives expected periods <1 s, and the observed flows appear to be unchanging.

Task i’s paths experience, on average, 19% of a full period before completion (Supplementary Figure S12), 
The effect of this can be seen in Fig. 7(a)’s erratic nature: since the flow is not stationary in time, small temporal 
differences between repetitions lead to differences in the net force that the object experiences at a given point, 
thus affecting its final path. Task ii’s paths experience only 8% of a full period, and we see fewer such shifts in 
behaviour.

(1)Tpred =
1

|fx − fy|



7

Vol.:(0123456789)

Scientific Reports |          (2022) 12:335  | https://doi.org/10.1038/s41598-021-04204-9

www.nature.com/scientificreports/

Conversely, Task iii’s average path lasts for 3.9 complete periods (Fig. 8), learning to use the periodic oscil-
lations to develop a reliable control strategy, which can be seen in Supplementary Video 4. At t = 0 s, the object 
is pushed radially towards the outer attractor. If the capillary forces do not bring the object to the container’s 
edge, the flow then pulls the object inwards while moving the object clockwise towards the target. This process 
is repeated every 3.5 s until the stable outer attractor is reached. By using the whole period, this control strategy 
should transfer well to a variety of different object shapes—small delays in a new object’s path will not cause it 
to experience a wholly different flow.

To test this, we consider the effect of the object’s geometry on the trajectories experienced, evaluating the 
solution’s transferability without additional training. This is achieved by introducing 6 new shapes: 8 mm, 46 mm, 
and 72 mm circles, 22 mm and 35 mm squares, and a 25 mm quatrefoil (Supplementary Figure S5), which are 
each tested 5 times with Fig. 7(a)’s tasks and final actions.

The paths followed by the six new objects are presented in Fig. 9. In all cases, it is noted that the surface flows 
generated by the oscillations are not significantly altered by the object geometry, with behavioural differences 
emerging from new interactions between the flow and the object. As expected, all of Task iii’s morphologies are 
brought close to the target via the periodic control strategy. However, the completion of the trained strategy relies 

Figure 7.  (a) Development of the agent’s solutions during training for the 5 selected tasks and their obtained 
rewards. Target locations are marked using notches on the container’s perimeter. (b) Box plots of d min—the 
floating object’s minimum distance from the target—during 10 repetitions of each task, normalized using the 
container radius rc.
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on the separatrix with the outer attracter being reached after a small number of cycles, which is not always the 
case when the object is changed. Changes in circle diameter affect not only these behavioural boundaries, but 
the physical area which can be navigated; the 72 mm circle’s paths are dominated by early edge hits caused by 
the expansion of the outer attractor’s basin, whilst the 8 mm circle’s erratic behaviour is caused by its tendency to 
be caught in local surface flows. Figure 10 compares the repeatability of the trajectories for all circle diameters, 
demonstrating a correlation between circle diameter and trajectory similarity. As the area increases, the net 
force applied to the object by the underlying flow is less prone to be significantly affected by any small areas of 
non-stationary mixing, leading to smoother and more repeatable paths. The difference metric between every pair 
of trajectories, rDTW , is calculated via dynamic time warping, with Euclidean distance between downsampled 
trajectories used as the local cost measure to be minimized (See Experimental Setup). The 20 mm rDTW values 
also reflect the task difficulties seen previously: Tasks iv and v, which require the largest angles to be traversed, 
show least similarity between repeated paths.

Clear correspondence to Fig. 7(a)’s paths can be seen throughout all tasks and morphologies of Fig. 9, suggest-
ing that functioning controllers could be quickly adapted from another morphology’s agent as a starting point 
for training. The average rewards for each shape—given by Eqs. 6a and 6b—are presented in Supplementary 
Figure S10. Supplementary Section S2 presents an additional dimensional analysis of the problem geometries, 
where a clear dependence of the solutions on the container radius and invariance to the fluid depth is observed.

Discussion
This study shows that deep learning techniques combined with large scale robotic experimentation can be used 
to develop effective controllers in the face of nonlinearities, non-convexity, and environmental stochasticity. We 
show not only that our agent learns to exploit Lagrangian coherent structures to produce optimal trajectories, 
but also that reward shaping based on the problem characteristics can be used to significantly reduce the learn-
ing period. Post-learning, a retrospective analysis of our solutions can be used to better understand the system’s 
complex underlying dynamics, with explorations of their dependence on environmental and geometric param-
eters aiding the development of increasingly robust controllers.

The proposed DRL architecture is highly desirable for this control task since unsuccessful trials can still be 
used to improve the critic and to aid exploration. Using insights from the physical setup, we further reduce the 
training time by reward shaping. We do this by encouraging outward radial motions in the early stages of training, 
avoiding non-repeatable behaviors. Fine tuning of the control policy then improves the overall reward. A high 
performing agent is obtained with our proposed methodology only after 5000 iterations. The total training time 
has upper bound of 3 minutes per iteration (up to 2 minutes for a full test plus 1 for the reset), giving an upper 
bound of 10.4 days of training for 5000 iterations. However, because of our reward’s shaping, the majority of 
attempts would hit the edge and stop early, thus taking less time. In the later stages of training, more than 1000 
iterations could be averaged every day, thereby providing good solutions to the problem in reasonable times, a 
challenge with current physical experimentation  platforms14. Multiple setups would permit parallel optimizations 

Figure 8.  Visualizations of the surface flows generated for each of the five tasks using glass microsphere tracer 
particles, each overlain with their characteristic paths. The bottom row shows Task iii’s periodic flow pattern, 
with the directions of two major flow oscillations indicated with arrows.
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and further reduction in training time. This would also aid in finding policies that are more robust due to una-
voidable errors incurred while replicating the  setup29. Note that the number of iterations taken for the DDPG 
agent to learn a global controller is only an order higher than the iterations used by the Bayesian optimization 
for a fixed target and starting location. The DDPG algorithm combines the advantages of both value function 
learning and direct policy learning. The DDPG agent can utilize information from unsuccessful trials to update 
its internal models through the critic. Other reinforcement learning techniques like Q-learning can also be used 
for this problem, but we would need an additional search algorithm to get the optimal actions. Direct policy 
learning (like DDPG) is, however, better in many ways. Direct policy learning can exploit patterns between the 
optimal action for each state and hence be more efficient. It can also be used in continuous state and action space, 
which is not the case in traditional Q-learning. The disadvantage of DDPG is that it is difficult to train, unstable 
and highly sensitive to hyperparameters.

Techniques for object manipulation using localized energy sources would provide better controllability and 
accuracy over the proposed remote control strategy. However, remote manipulation is still the only available 
solution for certain applications. Manipulation by propagating waves are highly desirable in real-world scenarios 
where there are restrictions on the environment and target objects. On-surface and underwater robotic manipu-
lation is the most straightforward bioinspired application, whilst current robotic technologies rely on direct 
contact with the target  object30–32. The open-loop implementation greatly simplifies the sensory and on-board 

Figure 9.  Transferability of the learned agent to a new set of shapes for the 5 example tasks. Each shape is tested 
5 times without any additional training.
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processing requirements. The transferability of the learned agent promises a practical approach to translate pre-
learned controllers to changing environments and objects with minimal adaptation.

As we have framed the problem as an open-loop control problem, learning the control policy requires only 
simple sensory feedback. The only state information required for learning is the starting position of the object and 
the final error from the target. Hence, our setup can be replaced with ultrasonic or lidar sensors, thereby enabling 
us to scale up the application domain. A future work is to investigate the feasibility of this and to look into its 
possible application for waste debris and oil spill manipulation. Most notably, this would include explorations of 
the scalability of this method: Supplementary Section S2’s dimensional analysis has indicated that our solution 
depends on the dimensionless Laplace number, which varies linearly with the geometry. Further investigations 
are required to construct the relationships between the two, to determine how far from the end effector the object 
could feasibly be controlled. Another line of future investigation is to enable closed-loop control by providing 
state feedback of the floating object during manipulation. As the state information about the moving fluid is 
difficult to measure and estimate, we will therefore have to reformulate the problem as a Partially Observable 
Markov Decision Process. The disadvantages of this partial observability versus the advantages of having real-
time feedback is to be investigated.

Methods
Experimental setup. The experimental setup consists of a tapered circular container filled with 8  L of 
water, with 85 mm water depth and 360 mm surface diameter (Fig. 1). Surface waves are generated from the 
container’s centre using a UR5 robotic arm equipped with a submersible end effector: a hollow PLA cylinder 
with 40 mm diameter and 80 mm length. An internal 12 V electromagnet is configured as a digital tool output 
of the arm such that, by holding the end effector above the water’s surface and powering the electromagnet, local 
magnetic objects on the water’s surface can be attracted and moved to a desired position. This forms the basis of 
the reset mechanism which allows the setup to autonomously run for extended periods of time (Supplementary 
Video 1 and Figure S4): the floating object is comprised of two layers of buoyant EVA foam sandwiching a cir-
cular steel shim, and can be retrieved and repositioned from any location in container using the electromagnet. 
To prevent the object from adhering to the end effector’s underside during this procedure, hot melt adhesive is 
used to texture its surface, limiting the contact area of the two.

To facilitate these resets, a webcam is positioned above the container, feeding live data to the PC which con-
trols the robotic arm via Python: a typical view is shown in Fig. 11. The bright orange of the EVA object against 
the dark background of the container makes it straightforward to apply a binary mask and to identify the circular 
object using MATLAB’s image processing toolbox. Prior to this, the camera is calibrated to eliminate distortions 
in the water surface plane. Small white calibration points marked on the inside of the container are used to locate 
the surface’s centre and return locations in polar coordinates, where θ = 0 is aligned with the camera’s horizontal 
orientation and the z direction is defined perpendicular to the plane of the water.

Figure 10.  The difference in object trajectories, rDTW , during repetitions of each task for different object 
diameters. A lower rDTW value indicates a highly repeatable trajectory, representing the minimized local cost 
measure during dynamic time warping. Values are normalized using the container radius rc.
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Figures 2 and 8’s flow visualizations are achieved by coating the surface of the water with a layer of K20 
glass microspheres (Supplementary Video 6) before the vibrations begin. The webcam’s output is then fed into 
MATLAB’s estimateFlow function to create Fig. 2’s vector field. To create Fig. 10, the radial time-series of 
each trajectory is first interpolated/downsampled to contain 500 readings. Each pair of trajectories (i.e. for n 
repetitions, 

(n
2

)

 pairs are considered) is fed into MATLAB’s dtw dynamic time warping function, which returns 
the minimised Euclidean distance between the stretched paths, rDTW.

Control space. The DDPG agent takes three inputs: the object’s starting position in 2D polar coordinates 
and the target periphery position, which is expressed using its polar angle. The ranges of the starting radius 
( 40 → 100 mm) and starting/target angles ( 0◦ → 180◦ ) are linearly normalized to the range (−1,1) throughout 
experimentation, marked by the shaded area in Fig. 11. This 3D state is sufficient to define the entirety of a single 
task, from which the agent must propose a suitable set of end-effector motions which obtain the highest reward.

These motions are defined using 11 control parameters, controlling orthogonal vibrations in the 3 Cartesian 
axes. Table 1 describes the 11 control parameters and their minimum/maximum limits. A sine wave’s mean 
(depth of submersion, d), amplitude, and frequency are defined in the z direction. The x and y axes are are each 
associated with a vibration frequency (f), amplitude (A), and phase ( φ ), relative to the z vibrations), with zero 
mean. The position p of the end effector’s tip can then be described as:

where p = 0 corresponds to the centre position at the surface of the water. The maximum values amplitude and 
frequency values (4 mm and 5 Hz, respectively) are chosen to avoid excessive vibrations of the table to which the 
arm is mounted, and to prevent water from spilling from the container edges. The maximum depth, d, is selected 
such that the arm is protected from water damage, with a minimum value ensuring that part of the end effector 
is always submerged during oscillations. The phases are not limited, and can take any value from 0 → 360 ◦.

The end effector can also rotate about this point at its tip. To limit the number of control parameters such 
that the agent can converge to a global solution in a reasonable amount of time, these rotation values—θx and θy
—are defined as constant values throughout each iteration. Their maximum/minimum values are set to ±10◦ , 
chosen to avoid interactions between the arm and container edge. Rotations about the z-axis are ignored, given 
the axisymmetry of the end effector. Like the inputs, the agent’s outputs—the 11 control parameters—are nor-
malized to (−1,1).

To check these parameter values, we first consider the fluid in the immediate vicinity of the oscillating end 
effector: as motion begins, the water is stationary, and the flow is assumed similar to that of a two-dimensional 
flow around a smooth cylinder. At the maximum amplitude (4 mm) and frequency (5 Hz) of a one-dimensional 
vibration, the maximum Reynolds number is then:

This is comfortably beyond the idealization’s fully laminar range: vortices develop behind the cylinder, and the 
boundary layer begins to transition from laminar to turbulent at the highest amplitudes and frequencies. In addi-
tion, Supplementary Figures S11a, S11b, S11c and S11d visualize the forward and backward-time Finite Time 
Lyapunov Exponents (FTLE) calculated from a short video clip (1/6 seconds) of the microsphere-containing 
 flows33. Though experimental noise prohibits exact measurement of the FTLE measurement over the flow, we 
can still observe how the surface flows affect the object trajectory. Regions where the FTLE is small are marked 
in white, regions of where activity propagates from (forward FTLE) and activity propagates towards (backward 
FTLE) are shown in orange and purple respectively. Regions of more predictable behaviour remain clearly visible 
in white, whilst densely populated regions—not just around the end effector—indicate regions of the underlying 
flow which are closer to chaotic behaviours.

The lower half of Fig. 1 depicts a typical view returned from the camera during the training stages. The inter-
face displayed during each iteration marks the container’s centre, the object’s current position and target posi-
tion, and displays the time elapsed since motion began. Given the development of an open-loop controller, this 
data is not fed back to the agent during each iteration, but is used after its completion to evaluate performance 
and allocate a suitable reward function. The only exceptions are the stopping conditions: an iteration is ended 
if the identified location reports that the object has hit the container edge, where capillary forces will retain it, 

(2)p =
[

Ax sin
(

2π fxt + φx
)

Ay sin
(

2π fyt + φy
)

Az sin
(

2π fz t
)

− d
]T

(3)Re =
ρuL

η
=

997 · 0.13 · 0.04

0.00089
= 5.6× 103.

Figure 11.  A typical view returned from the camera, indicating the obscured zone, the shaded area in which 
starting positions are randomized, and the operating semicircle in which target positions are set.
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or if two minutes have elapsed and the edge has not been reached. Before each iteration, a starting position and 
target location within Fig. 1’s operating region are randomly selected, and the object is positioned using the end 
effector’s electromagnet. The polar coordinate frame, common to the UR5 and vision system, is also marked.

BO and DDPG implementation. The input states do not change between Bayesian iterations, with each 
optimization process focusing on developing the best 11 vibration parameters for one of the three rotation cases. 
Following the completion of each iteration, a cost function uses the tracked path to sum the distance from the 
target and the time elapsed:

where tf  indicates the time in seconds before either stopping criterion is fulfilled, and lmin is the shortest distance 
recorded in mm between the object’s position and the target location over the whole trajectory.

The Bayesian optimization is implemented using MATLAB’s Statistics and Machine Learning toolbox. The 
three optimizations of Fig. 3(a) all use the same parameters (0.5 exploration ratio, Gaussian active set size of 300, 
and expected-improvement-per-second-plus acquisition function), and are halted after 680, 635, and 677 itera-
tions respectively. The optimizations begin with no prior knowledge of the system’s setup or nonlinear dynamics, 
and only receive updates through the action-in/cost-out black box implementation.

For training of the DDPG agent, the naïve reward function focuses only on minimising the distance:

where kl = 165 mm. A perfect hit of the target corresponds to a maximum reward of 2.3, decaying exponentially 
with lmin towards a minimum of −1.15. The training is halted after 4151 iterations, when little improvement is 
seen in the controller.

The shaped reward function consists of the sum of two Gaussian functions and a small time dependence: 

in which σθ = π
/

3 , σd = 50 mm, and kt = 120 s. �θ is the angle between the target location and the object’s 
final location, allocated only if the positional stopping criterion is fulfilled. If the temporal stopping criterion has 
instead been fulfilled, then the first Gaussian function is replaced with a negative reward:

 The combination of the reward described in 6a and 6b specifically discourages behaviours of the object which 
do not reach the container’s edge within the 2 minute time period (referred to as ‘uncompleted’ behaviours), 
whilst the function tends smoothly to a maximum of 2.25 amongst behaviours which reach the edge. The mini-
mum reward tends to −1.25, for uncompleted behaviours which remain far from the target location throughout. 
Training is terminated after 5000 iterations.

The passing of the object into Fig. 1’s obscured zone is not explicitly discouraged by the cost and reward func-
tions. Paths which pass through the zone and regain camera visibility are not penalised, but those which reach 
the edge in this region are considered uncompleted during the reward allocation. In this way, these paths pose 
a risk to the agent which does not exist when the zone is avoided. Coupled with the initialisation of all starting 
positions and target locations into Fig. 1’s operating semicircle, behaviours rarely rely on motion within this zone.

The trained DDPG agent is implemented using MATLAB’s Machine Learning toolbox, using two deep neural 
networks for its actor and critic architectures. Additional details, including an explanation of the chosen archi-
tecture, is given in Supplementary Section S1.

Between the actor’s 3-node input layer and its action space output, 5 hidden layers are implemented: 

1. Fully connected (FC) layer with 50 nodes
2. Rectified linear unit (ReLU)
3. 50-node FC layer
4. ReLU
5. FC layer of same size as action space

When Reward Function b (Eqs. 6a and 6b) is used, this final layer has size 11 (Table 1), whilst Reward Function 
a (Eq. 5) uses a 12th decay parameter D (ranging from 2 to 502) to linearly reduce the amplitude parameters at 
each time step:

The decay parameter was not used for the second agent as it did not improve the performance of the controller. 
The critic has two input layers, for the state and proposed action. Each is initially processed separately: the state 

(4)f = lmin + tf

(5)R(lmin) = 3.45

[
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is passed through a 50-node FC layer, ReLU and a second 50-node FC layer, whilst the action is fed into a single 
50-node FC layer. An additional layer then combines the two, before a ReLU and FC layer reduce the output 
dimensionality to 1: the reward estimate.

Data availability
The associated code & data may be found at https:// github. com/ DSHar dman/ FreeF loati ngObj ectsD DPG.
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