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Using Redundant and Disjoint Time-Variant Soft
Robotic Sensors for Accurate Static State Estimation

Thomas George Thuruthel , Josie Hughes , Member, IEEE, Antonia Georgopoulou , Frank Clemens ,
and Fumiya Iida , Senior Member, IEEE

Abstract—Soft robotic sensors have been limited in their ap-
plications due to their highly nonlinear time variant behavior.
Current studies are either looking into techniques to improve the
mechano-electrical properties of these sensors or into modelling
algorithms that account for the history of each sensor. Here, we
present a method for combining multi-material soft strain sensors
to obtain equivalent higher quality sensors; better than each of
the individual strain sensors. The core idea behind this work is
to use a combination of redundant and disjoint strain sensors to
compensate for the time-variant hidden states of a soft-bodied
system, to finally obtain the true strain state in a static manner
using a learning-based approach. We provide methods to develop
these variable sensors and metrics to estimate their dissimilarity
and efficacy of each sensor combinations, which can double down
as a benchmarking tool for soft robotic sensors. The proposed
approach is experimentally validated on a pneumatic actuator with
embedded soft strain sensors. Our results show that static data from
a combination of nonlinear time variant strain sensors is sufficient
to accurately estimate the strain state of a system.

Index Terms—Soft sensors and actuators, sensor fusion,
modeling, control, learning for soft robots.

I. INTRODUCTION

SOFT robotic sensors have immense potential to revolution-
ize the field of health-monitoring, human motion detection,

human-machine interfaces, and soft robotics, owing to their
high conformability [1]. Yet, the applications of these sensors
have been limited primarily because of the challenges in mod-
elling these sensors [2]. Irrespective of their stimuli responsive
mechanism, all of these sensors suffer from a combination of
nonlinearity, hysteresis, drift, overshoot and slow response [1].
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This can be attributed to the complex visco-elastic properties of
the sensor and its surrounding material.

The literature on the different types of soft sensors is wide
and immense. Here, we focus mainly on soft strain sensors,
are they are the most widely used. Their functional materials
vary from liquid conductors [3]–[5], nanocomposites [6]–[8],
optical [9] and so forth. Several studies incorporate additional
functionalities such as self-healing [10], [11], 3D printing [12],
etc. However, all of these sensors suffer from highly nonlinear
effect, either by itself or when they are embedded inside a soft
matrix [1], [2]. Depending on the strain responsive mechanism,
this can be because of the rearrangement of conductive parti-
cles [13], damage, geometric effects induced by the surrounding
visco-elastic matrix and/or de-lamination due to impedance mis-
match [14]. Solving these problems from the material side is still
an open challenge which is also hampered by the unavailability
of benchmarking tools for comparing different technologies.

Recent advancements in machine learning can be an alternate
solution to handling the nonlinear time-variant dynamics of
these soft sensors [15], [16]. This can be done by explicitly pro-
viding the past sensor information [17], by using recurrent neural
networks that can retain information about the past data [18]–
[20], or by using adaptive algorithms [21]. Both approaches,
however, have common disadvantages. By converting the static
state estimation problem into a dynamic one, the modelling
approach has to be now discretized and sampled at a fixed rate.
Coupled with the computational overhead of recurrent neural
networks, this also increases the hardware requirements for
sensor modelling. It is also more difficult to generate samples for
and train recurrent networks [22]. Moreover, due to the models
past dependence on the sensor data, initialization of the network
becomes complicated.

This work presents a novel alternate method to estimate the
true strain state of a soft bodied system using redundant and
disjoint strain sensors. The core idea is to use the additional
conditional mutual information obtained from multiple strain
sensors, strained by the same amount, to compensate for the
hidden states of visco-elastic body. We provide a method for
obtaining disjoint sensors by using multi-material sensory ma-
trix, similar to a work done for enhancing the gauge factor of
strain sensors [23]. The information theory concept of mutual
information is introduced as a numerical method to estimate
the quality of these nonlinear soft strain sensors and their
combination, which is verified using machine learning tools.
The proposed approach is verified experimentally using custom
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Fig. 1. A visualization of resolving uncertainties in the true strain state using
redundant and disjoint sensors. At least two dissimilar sensors are required for
hysteresis resolution (Left). Uncertainties in the strain state can be reduced with
redundant sensors in the case of the drift (Right).

made testing devices and on a simple pneumatic actuator. The
main contribution of this work is to show that redundant and
variable soft strain sensors can be combined in a static manner to
compensate for time variant non-linearities in soft strain sensors.
In addition, we present simple statistical techniques that can be
used for quantifying the quality of a soft strain sensor and its
combinations with any complex modelling techniques.

II. THEORY

The time varying behavior of a soft strain sensor is due to
several unobservable physical factors that may or may not be
dependent on the straining history. Hysteresis, for example,
occurs due to internal friction in the material, which is typically
modelled as a strain-rate dependent phenomenon. This makes
the response of a soft strain sensor to be a function of the
current strain and the other hidden states (for instance, stress,
strain rate, etc). As most of these hidden states are a function
of the straining history, this can also be estimated using the
past data of strain. Alternatively, these hidden states can also be
estimated using multiple sensors that undergo the same straining
history, but have varying dependencies on the hidden states. A
visualization of resolving uncertainties in the true strain state
using redundant sensors is shown in Fig. 1, for two typical time-
varying behaviors. Here, for the simplified hysteresis model, we
assume that resistance of the sensor is a function of the true strain
and the sign of the strain rate. Hence, the strain rate direction
will be the hidden state that cannot be observed using a single
strain sensor. Every observed resistance (Rm) can correspond
to two possible strain states (S1orS2) caused by the binary
ambiguity on possible strain rate direction (Shown by the two
unknown states in Fig. 1). By addition of an additional distinct
strain sensor, the true state can be resolved. This is because the
two possible strain states create four unique resistance states.
Strain S1 can only cause resistance R11 or R12, while Strain
S2 can only cause resistance R21 or R22. In other words, using
another sensor, the hidden strain rate direction can be estimated.

Fig. 2. The mutual information (I(X1;Y )) of two random variables provides
the amount of information obtained about one random variable through observ-
ing the other random variable. The same measure can be extended to multiple
variables with the conditional mutual information I(X2;Y |X1).

For more complex hysteresis models, more sensors would be
required for full resolution, based on the number of hidden
states. Drift, on the other hand, cannot be fully resolved with
multiple sensors, but the uncertainty on the true strain values
can be reduced with the addition of more and more sensors. For
every measured sensor resistance, the possible strain state can
be narrowed down to two bands of strain regions. Looking at the
intersection of these bands among all the sensors help in reducing
the uncertainty further. Other time variant non-linearities can be
resolved similarly. Note that redundant sensors can be still be
useful even if the sensors are exactly the same to reduce noise
and improve resolution of the sensor.

Given that temporal non-linearities can be resolved to varying
extends with dissimilar sensor networks undergoing the same
strain, we now go to the problem of quantitatively comparing
two sensors. Here, we propose the information theory metric
of mutual information as an empirical measure of the quality
of a sensor [24]. As modelling of these kind of sensors are
near impossible, we have to resort to empirical ways to test
and evaluate each sensor. In information theory, the mutual
information (MI) of two random variables is a measure of the
mutual dependence between the two variables. MI is a more
general notion in information theory that quantifies the expected
amount of information held in a random variable. The mutual
information I(X; Y) between two random variables X and Y
is the amount of information X gives about Y (Fig. 2). Mathe-
matically, we define this as the difference between the entropy
of X (H(X)) and the entropy of X conditioned on knowing Y
(H(X|Y )).

I(X;Y ) = H(X)−H(X|Y ) (1)

X is a random variable with distribution PX = (P1, . . . , Pk)
over a finite set of possible outcomes Ω = {1, . . . , k} and,

H(X) =
∑

x∈Ω
Px log

1

Px
(2)

The conditional entropy of X conditioned on another random
variable Y with distribution PY is:

H(X|Y ) = −EPY
[H(X|Y = y)] (3)
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Fig. 3. Response of the CTPE sensor to a cyclic triangular strain wave profile.
The strain profile is not shown for clarity.

Mutual information is symmetric, i.e. I(X;Y ) = I(Y ;X).
The higher the mutual information between the strain and sensor
data, the better the sensor performance as a static strain sensor.
Along the same lines, if the MI of sensorX2 is higher than sensor
X1 (I(X2;Y ) > I(X1;Y )), then it can be concluded that sensor
X2 will perform better than sensor X1.

Correspondingly, the performance of multiple sensors can
be quantified by their combined mutual information (Fig. 2).
Finally, dissimilarity between two sensors can be quantified
by their conditional mutual information (I(X1;Y |X2)). The
combined mutual information is written as:

I(X1, X2;Y ) = I(X1;Y ) + I(X2;Y |X1) (4)

The conditional mutual information can be obtained from the
joint entropies by the chain rule:

I(X2;Y |X1) = H(X2, X1) +H(Y,X1)

−H(X2, Y,X1)−H(X1)
(5)

Note that to obtain all the described measures, it is necessary
to uniformly sample for all possible strain within its range.

III. MATERIAL CHARACTERIZATION

This section presents the soft strain sensor that we are using
for our tests, its characterization and the process for obtaining
different behaviors from these sensors.

A. Conductive Thermoplastic Elastomer (CTPE)

The sensor we are using for our tests is a composite made
from a mixture of a thermoplastic elastomer and carbon black
extruded in the form of a cylindrical wire [6]. Upon stretching
the conductive particles rearrange and the geometry of the sensor
changes, causing a change in the base resistance of the sensor.
The response of the CTPE sensor when it is bare and when
it is surrounded by an embedding matrix (Ecoflex-20) to a
triangular strain wave profile is shown in Fig. 3. The straining
is done till 140% for both cases, with cycle times of 22 and
30 seconds respectively. It is observable that the response of
the CTPE sensor is not just dependent on the strain profile, but
also on the current stress values. This can be validated by using

Fig. 4. Physical factors and their effect on the electrical response of the CTPE
sensor. It can be seen that the electrical response of the sensor is highly dependent
on the current stress and strain.

Fig. 5. Experimental setup for studying change in sensor behavior with
surrounding matrix.

a simple feedforward neural network to predict the resistance
values using the strain and stress values as input. Here, we are
using an artificial neural network to measure the dependency
between a multivariate nonlinear mapping. The results of the
prediction analysis is shown in Fig. 4. It is evident that both
the current stress and strain values affect the electrical response
of the CTPE sensor, irrespective of the surrounding medium.
The internal stress value is one of the hidden states that has to be
estimated/compensated for obtaining the true strain values. Note
that the stress values can be estimated using the straining history,
but as mentioned previously, such modelling approaches are
highly undesirable. As stress distribution is a significant factor to
the response of the CTPE sensor, we can obtain varying behav-
iors from the CTPE sensor by simply changing the surrounding
matrix of the sensor which is validated in the next section.

B. Multi-Material Sensor Matrix

In order to investigate materials we can use for varying the
behavior of the CTPE sensor, we develop a test setup as shown
in Fig. 5. Six commonly used elastomeric matrices are used to
cover the CTPE sensor and their corresponding strain/resistance
behavior is investigated. Two samples of each material are made
to ensure that the behavioral change is repeatable. The materials
we used are Dragon Skin-20 (©Smooth-On, Inc), Ecoflex-20
(©Smooth-On, Inc), SYLGARD 184 Silicone Elastomer (©The
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Fig. 6. Cyclic straining tests for each sample of CTPE surrounded with
different matrix. Two samples of each material is tested for ensuring repeatability
(shown in the mirrored X Axis). Only values in positive straining is shown for
interpretability.

Dow Chemical Company), Dow Corning Silicone Sealant, Sil-
Poxy Silicone Adhesive (©Smooth-On, Inc) and Natural Rubber
(©East Coast Fibreglass Supplies).

Cyclic tests are performed on each sample (Fig. 6). The
Sil-Poxy Silicone Adhesive was the only material that showed
drastically unrepeatable performance and was hence removed
from our further studies. All the other samples showed high
repeatability in their nonlinear behavior among samples, even
though their properties changed significantly from the bare
CTPE sensor. This means that although the matrix affects the
nonlinear behavior of the sensor, this effect is consistent and
repeatable for a specific matrix. For example, the platinum cured
silicone elastomers DragonSkin and Ecoflex had an order of
magnitude change in their base resistance while curing and
had much higher drift, but this shift in base resistance and
the drift characteristics are repeatable among the two samples.
Knowing that varying, but repeatable properties can be obtained
by changing the surrounding matrix of the soft strain sensor,
we next investigate how such sensors can be combined to get
superior performance.

IV. RESULTS

A. Static Strain Estimation

To investigate how these developed sensor samples can be
combined for static strain estimation we perform further tests
using the experimental setup shown in Fig. 5. Seven embedded
sensor samples are randomly selected and mounted on the linear
straining device. Pseudo-random straining of the samples are
performed in parallel and their corresponding resistance’s are
measured. This is to ensure that straining occurs at varying
frequencies and amplitudes to induce all the nonlinear configu-
rations. The motion is limited to the maximum strain of 40 %
to avoid damages and plastic deformation of the sensor. This
causes each samples to have the same strain profile but varying
effects on their hidden states. The ability of a simple feedforward
neural network to estimate the true strain values from different
combinations of strain sensors is investigated along with the

Fig. 7. Strain prediction accuracy and Mutual Information of each embedded
soft sensor.

validation of Mutual Information as an indicator of the sensor
performance.

A sample size of 8000 data points is obtained for training the
neural network and estimation the mutual information values. A
single layer neural network with tanh activation functions and
a hidden layer size of 60 is used for learning the mapping from
the sensor resistances to the strain values. Levenberg-Marquardt
backpropagation is used for training the network with a training,
testing and validation set divided in the ratio 70:15:15 respec-
tively. The validation set ensures that overfitting is unlikely.
The training is performed in the MATLAB environment. For
calculating the Mutual information of each sensor and their
combinations, a public toolbox, MIToolbox is used [25]. Note
that as the MI of random variables depend on the resolution of
the measuring device, the discrete values obtained directly from
the data acquisition system is used (12 bits).

The prediction accuracy for each individual sensor along with
their mutual information (1) with the strain values is shown
in Fig. 7. The prediction accuracy is measured as the inverse
of the mean squared error of the estimated strain for all the
sample. As expected, natural rubber which showed low drift
and higher linearity to strain performs the best, but only by
a small margin. As the behavior of these sensors are highly
nonlinear, it is difficult to predict their performance based on
visual inspection. Testing by training on a neural network is
one solution, but it is time consuming and dependent on the
architecture of the network. Mutual Information, on the other
hand, is a quick and powerful metric to estimate the quality of a
sensor (Fig. 7). For instance, measuring the MI of a single sensor
took on average 24µs, while measuring the combined MI of two
sensor took on average 840 µs. Note that the accuracy results
shown here are specific to the input (i.e linear strain) and not
necessarily transferable to other sensing objectives like shear,
pressure, etc.

Extending the same methodology ( 4) to two sensors combina-
tions (21 in total), we can obtain similar results as we observed
for the single sensor case, with small deviations due to noise
(Fig. 8). The mutual information measure is a robust indicator of
the best and worst combinations of the embedded soft sensors for
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Fig. 8. Strain prediction accuracy and Mutual Information for all 21 combi-
nations of double sensors. The sensor combinations are sorted by their mutual
information for comparison.

Fig. 9. Improvement in static strain sensing accuracy with the addition of
redundant and disjoint soft strain sensors. The prediction accuracy for the best
combination is shown here.

strain measurement. Note that the MI metric is obtained through
statistical techniques without any modelling involved, which is
highly desirable for soft strain sensors.

The best prediction accuracies for all number of redundant
sensor configurations are shown in Fig. 9 . As expected, with
higher number of sensors, the prediction accuracy also becomes
higher. Interestingly, the performance of the combined sensor
systems is independent from the individual sensor performances.
For instance, the silicone sealant is the worst performing sensor
matrix by itself, however, in combination with one of the Natural
Rubber embedded sensor, we get the best performing combi-
nation for a two sensor configuration. Such observations can
only be obtained through statistical techniques we show here or
with learning based approaches. Traditional tools like measuring
linearity, hysteresis, drift, etc can be used for evaluating a single
soft sensor, but is not extendable to sensor combinations. It must
be pointed out that in our analysis we have kept the sensors
separate from each other, which is not a realistic scenario. In the
next section we show how the multi-material embedded sensors
can be used for practical purposes.

Fig. 10. Experimental Setup for predicting bending state from the static sensor
data.

Fig. 11. Strain prediction accuracy and Mutual Information of each embedded
soft sensor for the bending actuator.

Fig. 12. Strain prediction accuracy and Mutual Information for each com-
bination of two embedded soft sensor for the bending actuator. The sensor
combinations are sorted by their mutual information for comparison.

B. Case Study: Pneumatic Actuator

In order to validate the applicability of our proposed method
for practical applications, we develop a one Degree of Freedom
soft pneumatic bending actuator with seven embedded sensors
(Fig. 10) . As all the sensors have to be finally embedded in
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Fig. 13. Estimating the pixel coordinates of the end-effector of the soft actuator with different combinations of the soft strain sensors (The best combination is
seleted for each). Almost all the effects of drift and hysteresis can be compensated with the addition of redundant variable soft sensors.

the same matrix as the actuator, some of the sensors are coated
with a thin layer of different material before being placed in
the actuator. In order to maintain compatibility with the actuator
material (Ecoflex), we use only three type of embedding matrix
for the sensors; DragonSkin, Natural Rubber and Ecoflex itself.
As the coating on the strain is thin, the introduction of the new
material does not affect the physical properties of the sensor
much. Pseudorandom actuation patterns are input to the finger
and the corresponding sensor resistances and finger tip positions
are recorded. 15 000 data points are collected using a 12-bit
resolution DAQ.

The prediction accuracy for each individual sensor along with
their mutual information with the bending angle is shown in
Fig. 11. Just like the linear strain case, the mutual information
metric is still a good indicator of the sensor performance. Note
that there is some variability in the performance of the sensors
even if they are embedded in same matrix. This can be expected
as now there is an additional interface introduced by the actuator
material, which can further affect the stress distribution around
the sensor. Similar analysis for all the two sensor combinations
are shown in Fig. 12. The figure is plotted based on the sorted
MI values to show the correlation between MI and the predic-
tion error. Note that prediction accuracy obtained through the
learning process is not necessarily a good measure of the sensor
quality, as they are prone to overfitting the data.

The improvement in prediction accuracy with the increase
in redundant sensor configuration is shown in Fig. 14. It can be
seen that significant improvements in prediction accuracy can be
obtained by additional strain sensors. The real predicted values
of the marker using the learned model and the best combination
of sensors are shown in Fig. 13 for reference. Even with two
sensors, it is clear that an accurate estimation of strain can be

Fig. 14. Improvement in static strain sensing accuracy with the addition of
redundant and disjoint soft strain sensors for the bending actuator. The prediction
accuracy for the best combination is shown here.

obtained without taking into account the past history of the
sensor.

V. CONCLUSION

This letter presents a methodology for using redundant and
disjoint soft robotic sensors for accurate static strain estima-
tion. The main idea behind this letter is to compensate for
the time-variant hidden states of a soft-bodied system using
these redundant and disjoint sensors to finally obtain the true
strain state in a static manner. Theoretical underpinnings of
the concept is demonstrated through information theoretics and
learning-based methods are used to validate the theory. Our
results are a demonstration that quantity can upend quality,
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especially for soft strain sensors where variability is intrinsic
to most manufacturing processes and high quality sensors are
very difficult to develop and fabricate. As the state estimation
is done using only current sensor data, the processing and
learning architecture is greatly simplified when compared to
modelling with recurrent neural networks. We also introduce
Mutual Information as a quick measure of the quality of the
sensors. It can also be used to compare different sensors in a
universal manner. In the paper we train all the combinations of
sensors to compare their performances. This is not required in
actual applications. We can use the MI measures to pick the
best combinations or use all the available sensors, which will
guarantee the best performance.

The true potential of our methodology can be realized with
fabrication and data processing techniques that can create and
process a large number of soft sensors. As the algorithm favours
variability among sensors, intrinsic variabilities in the manu-
facturing process is advantageous. Higher variabilities can be
introduced with multi-material fabrication, as we show in this
letter. This approach can also be used to design optimized
sensory structures [17], [26], [27]. Future works include scaling
up the experimental setup for high-dimensional state estima-
tion and for closed-loop control with feedback from embedded
sensors.
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